-rw-r--r-- 5640 libmceliece-20240812/crypto_kem/8192128/vec/pk_gen.c raw
/*
This file is for public-key generation
*/
// 20240805 djb: more use of cryptoint
// 20240715 djb: more use of crypto_*_mask
// 20240508 djb: switch to crypto_sort_int64
// 20221231 djb: more 0 initialization to clarify data flow; tnx thom wiggers
// 20221230 djb: add linker lines
// linker define pk_gen
// linker use fft vec_inv vec_mul
#include "pk_gen.h"
#include "controlbits.h"
#include "crypto_sort_int64.h"
#include "params.h"
#include "benes.h"
#include "util.h"
#include "fft.h"
#include "crypto_declassify.h"
#include "crypto_uint64.h"
#include "crypto_int64.h"
static crypto_uint64 uint64_is_equal_declassify(uint64_t t,uint64_t u)
{
crypto_uint64 mask = crypto_uint64_equal_mask(t,u);
crypto_declassify(&mask,sizeof mask);
return mask;
}
static crypto_uint64 uint64_is_zero_declassify(uint64_t t)
{
crypto_uint64 mask = crypto_uint64_zero_mask(t);
crypto_declassify(&mask,sizeof mask);
return mask;
}
#include <stdint.h>
static void de_bitslicing(uint64_t * out, const vec in[][GFBITS])
{
int i, j, r;
for (i = 0; i < (1 << GFBITS); i++)
out[i] = 0 ;
for (i = 0; i < 128; i++)
for (j = GFBITS-1; j >= 0; j--)
for (r = 0; r < 64; r++)
{
out[i*64 + r] <<= 1;
out[i*64 + r] |= crypto_int64_bitmod_01(in[i][j], r);
}
}
static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t * in)
{
int i, j, r;
for (i = 0; i < 128; i++)
{
for (j = 0;j < GFBITS;++j) out0[i][j] = out1[i][j] = 0;
for (j = GFBITS-1; j >= 0; j--)
for (r = 63; r >= 0; r--)
{
out1[i][j] <<= 1;
out1[i][j] |= crypto_int64_bitmod_01(in[i*64 + r], j + GFBITS);
}
for (j = GFBITS-1; j >= 0; j--)
for (r = 63; r >= 0; r--)
{
out0[i][GFBITS-1-j] <<= 1;
out0[i][GFBITS-1-j] |= crypto_int64_bitmod_01(in[i*64 + r], j);
}
}
}
int pk_gen(unsigned char * pk, const unsigned char * irr, uint32_t * perm, int16_t * pi)
{
int i, j, k;
int row, c, d;
uint64_t mat[ PK_NROWS ][ 128 ];
uint64_t ops[ PK_NROWS ][ PK_NROWS / 64 ];
uint64_t mask;
vec irr_int[2][ GFBITS ];
vec consts[ 128 ][ GFBITS ];
vec eval[ 128 ][ GFBITS ];
vec prod[ 128 ][ GFBITS ];
vec tmp[ GFBITS ];
uint64_t list[1 << GFBITS];
uint64_t one_row[ PK_NCOLS/64 ];
// compute the inverses
irr_load(irr_int, irr);
fft(eval, irr_int);
vec_copy(prod[0], eval[0]);
for (i = 1; i < 128; i++)
vec_mul(prod[i], prod[i-1], eval[i]);
vec_inv(tmp, prod[127]);
for (i = 126; i >= 0; i--)
{
vec_mul(prod[i+1], prod[i], tmp);
vec_mul(tmp, tmp, eval[i+1]);
}
vec_copy(prod[0], tmp);
// fill matrix
de_bitslicing(list, prod);
for (i = 0; i < (1 << GFBITS); i++)
{
list[i] <<= GFBITS;
list[i] |= i;
list[i] |= ((uint64_t) perm[i]) << 31;
}
crypto_sort_int64(list, 1 << GFBITS);
for (i = 1; i < (1 << GFBITS); i++)
if (uint64_is_equal_declassify(list[i-1] >> 31,list[i] >> 31))
return -1;
to_bitslicing_2x(consts, prod, list);
for (i = 0; i < (1 << GFBITS); i++)
pi[i] = list[i] & GFMASK;
for (j = 0; j < (PK_NROWS + 63)/64; j++)
for (k = 0; k < GFBITS; k++)
mat[ k ][ j ] = prod[ j ][ k ];
for (i = 1; i < SYS_T; i++)
for (j = 0; j < (PK_NROWS + 63)/64; j++)
{
vec_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++)
mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ];
}
// gaussian elimination to obtain an upper triangular matrix
// and keep track of the operations in ops
for (i = 0; i < PK_NROWS / 64; i++)
for (j = 0; j < 64; j++)
{
row = i*64 + j;
for (c = 0; c < PK_NROWS / 64; c++)
ops[ row ][ c ] = 0;
}
for (i = 0; i < PK_NROWS / 64; i++)
for (j = 0; j < 64; j++)
{
row = i*64 + j;
ops[ row ][ i ] = 1;
ops[ row ][ i ] <<= j;
}
for (i = 0; i < PK_NROWS / 64; i++)
for (j = 0; j < 64; j++)
{
row = i*64 + j;
for (k = row + 1; k < PK_NROWS; k++)
{
mask = ~crypto_uint64_bitmod_mask(mat[ row ][ i ], j);
for (c = 0; c < PK_NROWS / 64; c++)
{
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
}
}
mask = crypto_uint64_bitmod_mask(mat[ row ][ i ], j);
if ( uint64_is_zero_declassify(mask) ) // return if not systematic
{
return -1;
}
for (k = row+1; k < PK_NROWS; k++)
{
mask = crypto_uint64_bitmod_mask(mat[ k ][ i ], j);
for (c = 0; c < PK_NROWS / 64; c++)
{
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
// computing the lineaer map required to obatin the systematic form
for (i = PK_NROWS / 64 - 1; i >= 0; i--)
for (j = 63; j >= 0; j--)
{
row = i*64 + j;
for (k = 0; k < row; k++)
{
{
mask = crypto_uint64_bitmod_mask(mat[ k ][ i ], j);
for (c = 0; c < PK_NROWS / 64; c++)
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
// apply the linear map to the non-systematic part
for (j = (PK_NROWS + 63)/64; j < 128; j++)
for (k = 0; k < GFBITS; k++)
mat[ k ][ j ] = prod[ j ][ k ];
for (i = 1; i < SYS_T; i++)
for (j = (PK_NROWS + 63)/64; j < 128; j++)
{
vec_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++)
mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ];
}
for (i = 0; i < PK_NROWS / 64; i++)
for (j = 0; j < 64; j++)
{
row = i*64 + j;
for (k = 0; k < PK_NCOLS/64; k++)
one_row[ k ] = 0;
for (c = 0; c < PK_NROWS / 64; c++)
for (d = 0; d < 64; d++)
{
mask = crypto_uint64_bitmod_mask(ops[ row ][ c ], d);
for (k = 0; k < PK_NCOLS/64; k++)
one_row[ k ] ^= mat[ c*64 + d ][ k + PK_NROWS/64 ] & mask;
}
for (k = 0; k < PK_NCOLS/64; k++)
{
store8(pk, one_row[ k ]);
pk += 8;
}
}
//
return 0;
}