-rw-r--r-- 5578 libmceliece-20240812/crypto_kem/348864/vec/pk_gen.c raw
/* This file is for public-key generation */ // 20240805 djb: more use of cryptoint // 20240715 djb: more use of crypto_*_mask // 20240508 djb: switch to crypto_sort_int64 // 20221231 djb: more 0 initialization to clarify data flow; tnx thom wiggers // 20221230 djb: add linker lines // linker define pk_gen // linker use fft vec_inv vec_mul #include "pk_gen.h" #include "controlbits.h" #include "crypto_sort_int64.h" #include "params.h" #include "benes.h" #include "util.h" #include "fft.h" #include "vec.h" #include "crypto_declassify.h" #include "crypto_uint64.h" #include "crypto_int64.h" static crypto_uint64 uint64_is_equal_declassify(uint64_t t,uint64_t u) { crypto_uint64 mask = crypto_uint64_equal_mask(t,u); crypto_declassify(&mask,sizeof mask); return mask; } static crypto_uint64 uint64_is_zero_declassify(uint64_t t) { crypto_uint64 mask = crypto_uint64_zero_mask(t); crypto_declassify(&mask,sizeof mask); return mask; } #include <stdint.h> static void de_bitslicing(uint64_t * out, const vec in[][GFBITS]) { int i, j, r; for (i = 0; i < (1 << GFBITS); i++) out[i] = 0 ; for (i = 0; i < 64; i++) for (j = GFBITS-1; j >= 0; j--) for (r = 0; r < 64; r++) { out[i*64 + r] <<= 1; out[i*64 + r] |= crypto_int64_bitmod_01(in[i][j], r); } } static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t * in) { int i, j, r; for (i = 0; i < 64; i++) { for (j = 0;j < GFBITS;++j) out0[i][j] = out1[i][j] = 0; for (j = GFBITS-1; j >= 0; j--) for (r = 63; r >= 0; r--) { out1[i][j] <<= 1; out1[i][j] |= crypto_int64_bitmod_01(in[i*64 + r], j + GFBITS); } for (j = GFBITS-1; j >= 0; j--) for (r = 63; r >= 0; r--) { out0[i][GFBITS-1-j] <<= 1; out0[i][GFBITS-1-j] |= crypto_int64_bitmod_01(in[i*64 + r], j); } } } int pk_gen(unsigned char * pk, const unsigned char * irr, uint32_t * perm, int16_t * pi) { const int nblocks_H = (SYS_N + 63) / 64; const int nblocks_I = (PK_NROWS + 63) / 64; const int block_idx = nblocks_I; int i, j, k; int row, c; uint64_t mat[ PK_NROWS ][ nblocks_H ]; uint64_t ops[ PK_NROWS ][ nblocks_I ]; uint64_t mask; uint64_t irr_int[ GFBITS ]; vec consts[64][ GFBITS ]; vec eval[ 64 ][ GFBITS ]; vec prod[ 64 ][ GFBITS ]; vec tmp[ GFBITS ]; uint64_t list[1 << GFBITS]; uint64_t one_row[ 64 ]; // compute the inverses irr_load(irr_int, irr); fft(eval, irr_int); vec_copy(prod[0], eval[0]); for (i = 1; i < 64; i++) vec_mul(prod[i], prod[i-1], eval[i]); vec_inv(tmp, prod[63]); for (i = 62; i >= 0; i--) { vec_mul(prod[i+1], prod[i], tmp); vec_mul(tmp, tmp, eval[i+1]); } vec_copy(prod[0], tmp); // fill matrix de_bitslicing(list, prod); for (i = 0; i < (1 << GFBITS); i++) { list[i] <<= GFBITS; list[i] |= i; list[i] |= ((uint64_t) perm[i]) << 31; } crypto_sort_int64(list, 1 << GFBITS); for (i = 1; i < (1 << GFBITS); i++) if (uint64_is_equal_declassify(list[i-1] >> 31,list[i] >> 31)) return -1; to_bitslicing_2x(consts, prod, list); for (i = 0; i < (1 << GFBITS); i++) pi[i] = list[i] & GFMASK; for (j = 0; j < nblocks_I; j++) for (k = 0; k < GFBITS; k++) mat[ k ][ j ] = prod[ j ][ k ]; for (i = 1; i < SYS_T; i++) for (j = 0; j < nblocks_I; j++) { vec_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ]; } // gaussian elimination to obtain an upper triangular matrix // and keep track of the operations in ops for (i = 0; i < PK_NROWS; i++) for (j = 0; j < nblocks_I; j++) ops[ i ][ j ] = 0; for (i = 0; i < PK_NROWS; i++) { ops[ i ][ i / 64 ] = 1; ops[ i ][ i / 64 ] <<= (i % 64); } for (row = 0; row < PK_NROWS; row++) { i = row >> 6; j = row & 63; for (k = row + 1; k < PK_NROWS; k++) { mask = ~crypto_uint64_bitmod_mask(mat[ row ][ i ], j); for (c = 0; c < nblocks_I; c++) { mat[ row ][ c ] ^= mat[ k ][ c ] & mask; ops[ row ][ c ] ^= ops[ k ][ c ] & mask; } } mask = crypto_uint64_bitmod_mask(mat[ row ][ i ], j); if ( uint64_is_zero_declassify(mask) ) // return if not systematic { return -1; } for (k = row+1; k < PK_NROWS; k++) { mask = crypto_uint64_bitmod_mask(mat[ k ][ i ], j); for (c = 0; c < nblocks_I; c++) { mat[ k ][ c ] ^= mat[ row ][ c ] & mask; ops[ k ][ c ] ^= ops[ row ][ c ] & mask; } } } // computing the lineaer map required to obatin the systematic form for (row = PK_NROWS-1; row >= 0; row--) for (k = 0; k < row; k++) { mask = crypto_uint64_bitmod_mask(mat[ k ][ row/64 ], row); for (c = 0; c < nblocks_I; c++) ops[ k ][ c ] ^= ops[ row ][ c ] & mask; } // apply the linear map to the non-systematic part for (j = nblocks_I; j < nblocks_H; j++) for (k = 0; k < GFBITS; k++) mat[ k ][ j ] = prod[ j ][ k ]; for (i = 1; i < SYS_T; i++) for (j = nblocks_I; j < nblocks_H; j++) { vec_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ]; } for (row = 0; row < PK_NROWS; row++) { i = row >> 6; j = row & 63; for (k = 0; k < nblocks_H; k++) one_row[ k ] = 0; for (c = 0; c < PK_NROWS; c++) { mask = crypto_uint64_bitmod_mask(ops[ row ][ c >> 6 ], c); for (k = block_idx; k < nblocks_H; k++){ one_row[ k ] ^= mat[ c ][ k ] & mask; } } for (k = block_idx; k < nblocks_H - 1; k++) { store8(pk, one_row[k]); pk += 8; } store_i(pk, one_row[k], PK_ROW_BYTES % 8); pk += PK_ROW_BYTES % 8; } // return 0; }