-rw-r--r-- 5241 libmceliece-20240812/crypto_kem/348864/avx/bm.c raw
#define update_asm CRYPTO_SHARED_NAMESPACE(update_asm) #define _update_asm _CRYPTO_SHARED_NAMESPACE(update_asm) #define vec_reduce_asm CRYPTO_SHARED_NAMESPACE(vec_reduce_asm) #define _vec_reduce_asm _CRYPTO_SHARED_NAMESPACE(vec_reduce_asm) /* This file is for implementating the inversion-free Berlekamp-Massey algorithm see https://ieeexplore.ieee.org/document/87857 For the implementation strategy, see https://eprint.iacr.org/2017/793.pdf */ // 20240805 djb: more use of cryptoint // 20240530 djb: CRYPTO_ALIGN instead of ALIGN // 20240508 djb: include vec128_gf.h // 20240503 djb: use crypto_*_mask functions // 20221231 djb: ALIGN(32) for some arrays; tnx thom wiggers // 20221230 djb: add linker lines // linker define bm // linker use update_asm vec_reduce_asm // linker use vec_mul_sp_asm // linker use vec128_mul_asm // linker use gf_inv // linker use gf_mul2 #include "bm.h" #include "vec128_gf.h" #include "util.h" #include "vec.h" #include "gf.h" #include "crypto_uint64.h" #include <stdint.h> #include "crypto_int64.h" extern void update_asm(void *, gf, int); extern gf vec_reduce_asm(uint64_t *); static inline void vec_cmov(uint64_t out[][2], uint64_t mask) { int i; for (i = 0; i < GFBITS; i++) out[i][0] = (out[i][0] & ~mask) | (out[i][1] & mask); } static inline void interleave(vec128 *in, int idx0, int idx1, vec128 *mask, int b) { int s = 1 << b; vec128 x, y; x = vec128_or(vec128_and(in[idx0], mask[0]), vec128_sll_2x(vec128_and(in[idx1], mask[0]), s)); y = vec128_or(vec128_srl_2x(vec128_and(in[idx0], mask[1]), s), vec128_and(in[idx1], mask[1])); in[idx0] = x; in[idx1] = y; } /* input: in, field elements in bitsliced form */ /* output: out, field elements in non-bitsliced form */ static inline void get_coefs(gf *out, vec128 *in) { int i, k; vec128 mask[4][2]; vec128 buf[16]; for (i = 0; i < GFBITS; i++) buf[i] = in[i]; for (i = GFBITS; i < 16; i++) buf[i] = vec128_setzero(); mask[0][0] = vec128_set1_16b(0x5555); mask[0][1] = vec128_set1_16b(0xAAAA); mask[1][0] = vec128_set1_16b(0x3333); mask[1][1] = vec128_set1_16b(0xCCCC); mask[2][0] = vec128_set1_16b(0x0F0F); mask[2][1] = vec128_set1_16b(0xF0F0); mask[3][0] = vec128_set1_16b(0x00FF); mask[3][1] = vec128_set1_16b(0xFF00); interleave(buf, 0, 8, mask[3], 3); interleave(buf, 1, 9, mask[3], 3); interleave(buf, 2, 10, mask[3], 3); interleave(buf, 3, 11, mask[3], 3); interleave(buf, 4, 12, mask[3], 3); interleave(buf, 5, 13, mask[3], 3); interleave(buf, 6, 14, mask[3], 3); interleave(buf, 7, 15, mask[3], 3); interleave(buf, 0, 4, mask[2], 2); interleave(buf, 1, 5, mask[2], 2); interleave(buf, 2, 6, mask[2], 2); interleave(buf, 3, 7, mask[2], 2); interleave(buf, 8, 12, mask[2], 2); interleave(buf, 9, 13, mask[2], 2); interleave(buf, 10, 14, mask[2], 2); interleave(buf, 11, 15, mask[2], 2); interleave(buf, 0, 2, mask[1], 1); interleave(buf, 1, 3, mask[1], 1); interleave(buf, 4, 6, mask[1], 1); interleave(buf, 5, 7, mask[1], 1); interleave(buf, 8, 10, mask[1], 1); interleave(buf, 9, 11, mask[1], 1); interleave(buf, 12, 14, mask[1], 1); interleave(buf, 13, 15, mask[1], 1); interleave(buf, 0, 1, mask[0], 0); interleave(buf, 2, 3, mask[0], 0); interleave(buf, 4, 5, mask[0], 0); interleave(buf, 6, 7, mask[0], 0); interleave(buf, 8, 9, mask[0], 0); interleave(buf, 10, 11, mask[0], 0); interleave(buf, 12, 13, mask[0], 0); interleave(buf, 14, 15, mask[0], 0); for (i = 0; i < 16; i++) for (k = 0; k < 4; k++) { out[ (4*0 + k)*16 + i ] = (vec128_extract(buf[i], 0) >> (k*16)) & GFMASK; out[ (4*1 + k)*16 + i ] = (vec128_extract(buf[i], 1) >> (k*16)) & GFMASK; } } /* input: in, field elements in bitsliced form */ /* output: out, field elements in non-bitsliced form */ void bm(uint64_t out[ GFBITS ], vec128 in[ GFBITS ]) { uint16_t i; uint16_t N, L; uint64_t prod[ GFBITS ]; uint64_t in_tmp[ GFBITS ]; CRYPTO_ALIGN(32) uint64_t db[ GFBITS ][ 2 ]; CRYPTO_ALIGN(32) uint64_t BC_tmp[ GFBITS ][ 2 ]; CRYPTO_ALIGN(32) uint64_t BC[ GFBITS ][ 2 ]; uint64_t mask, t; gf d, b, c0=1; gf coefs[SYS_T * 2]; // init BC[0][1] = 0; BC[0][0] = 1; BC[0][0] <<= 63; for (i = 1; i < GFBITS; i++) BC[i][0] = BC[i][1] = 0; b = 1; L = 0; // get_coefs(coefs, in); for (i = 0; i < GFBITS; i++) in_tmp[i] = 0; for (N = 0; N < SYS_T * 2; N++) { // computing d vec_mul_sp(prod, in_tmp, &BC[0][0]); update_asm(in_tmp, coefs[N], 8); d = vec_reduce_asm(prod); t = gf_mul2(c0, coefs[N], b); d ^= t & 0xFFFFFFFF; // 3 cases mask = crypto_uint64_nonzero_mask(d) & crypto_uint64_leq_mask(L*2, N); for (i = 0; i < GFBITS; i++) { db[i][0] = crypto_int64_bitmod_mask(d, i); db[i][1] = crypto_int64_bitmod_mask(b, i); } vec128_mul((vec128*) BC_tmp, (vec128*) db, (vec128*) BC); vec_cmov(BC, mask); update_asm(BC, mask & c0, 16); for (i = 0; i < GFBITS; i++) BC[i][1] = BC_tmp[i][0] ^ BC_tmp[i][1]; c0 = t >> 32; b = (d & mask) | (b & ~mask); L = ((N+1-L) & mask) | (L & ~mask); } c0 = gf_inv(c0); for (i = 0; i < GFBITS; i++) { out[i] = crypto_int64_bitmod_mask(c0, i); } vec_mul_sp(out, out, &BC[0][0]); }