-rw-r--r-- 5241 libmceliece-20240812/crypto_kem/348864/avx/bm.c raw
#define update_asm CRYPTO_SHARED_NAMESPACE(update_asm)
#define _update_asm _CRYPTO_SHARED_NAMESPACE(update_asm)
#define vec_reduce_asm CRYPTO_SHARED_NAMESPACE(vec_reduce_asm)
#define _vec_reduce_asm _CRYPTO_SHARED_NAMESPACE(vec_reduce_asm)
/*
This file is for implementating the inversion-free Berlekamp-Massey algorithm
see https://ieeexplore.ieee.org/document/87857
For the implementation strategy, see
https://eprint.iacr.org/2017/793.pdf
*/
// 20240805 djb: more use of cryptoint
// 20240530 djb: CRYPTO_ALIGN instead of ALIGN
// 20240508 djb: include vec128_gf.h
// 20240503 djb: use crypto_*_mask functions
// 20221231 djb: ALIGN(32) for some arrays; tnx thom wiggers
// 20221230 djb: add linker lines
// linker define bm
// linker use update_asm vec_reduce_asm
// linker use vec_mul_sp_asm
// linker use vec128_mul_asm
// linker use gf_inv
// linker use gf_mul2
#include "bm.h"
#include "vec128_gf.h"
#include "util.h"
#include "vec.h"
#include "gf.h"
#include "crypto_uint64.h"
#include <stdint.h>
#include "crypto_int64.h"
extern void update_asm(void *, gf, int);
extern gf vec_reduce_asm(uint64_t *);
static inline void vec_cmov(uint64_t out[][2], uint64_t mask)
{
int i;
for (i = 0; i < GFBITS; i++)
out[i][0] = (out[i][0] & ~mask) | (out[i][1] & mask);
}
static inline void interleave(vec128 *in, int idx0, int idx1, vec128 *mask, int b)
{
int s = 1 << b;
vec128 x, y;
x = vec128_or(vec128_and(in[idx0], mask[0]),
vec128_sll_2x(vec128_and(in[idx1], mask[0]), s));
y = vec128_or(vec128_srl_2x(vec128_and(in[idx0], mask[1]), s),
vec128_and(in[idx1], mask[1]));
in[idx0] = x;
in[idx1] = y;
}
/* input: in, field elements in bitsliced form */
/* output: out, field elements in non-bitsliced form */
static inline void get_coefs(gf *out, vec128 *in)
{
int i, k;
vec128 mask[4][2];
vec128 buf[16];
for (i = 0; i < GFBITS; i++) buf[i] = in[i];
for (i = GFBITS; i < 16; i++) buf[i] = vec128_setzero();
mask[0][0] = vec128_set1_16b(0x5555);
mask[0][1] = vec128_set1_16b(0xAAAA);
mask[1][0] = vec128_set1_16b(0x3333);
mask[1][1] = vec128_set1_16b(0xCCCC);
mask[2][0] = vec128_set1_16b(0x0F0F);
mask[2][1] = vec128_set1_16b(0xF0F0);
mask[3][0] = vec128_set1_16b(0x00FF);
mask[3][1] = vec128_set1_16b(0xFF00);
interleave(buf, 0, 8, mask[3], 3);
interleave(buf, 1, 9, mask[3], 3);
interleave(buf, 2, 10, mask[3], 3);
interleave(buf, 3, 11, mask[3], 3);
interleave(buf, 4, 12, mask[3], 3);
interleave(buf, 5, 13, mask[3], 3);
interleave(buf, 6, 14, mask[3], 3);
interleave(buf, 7, 15, mask[3], 3);
interleave(buf, 0, 4, mask[2], 2);
interleave(buf, 1, 5, mask[2], 2);
interleave(buf, 2, 6, mask[2], 2);
interleave(buf, 3, 7, mask[2], 2);
interleave(buf, 8, 12, mask[2], 2);
interleave(buf, 9, 13, mask[2], 2);
interleave(buf, 10, 14, mask[2], 2);
interleave(buf, 11, 15, mask[2], 2);
interleave(buf, 0, 2, mask[1], 1);
interleave(buf, 1, 3, mask[1], 1);
interleave(buf, 4, 6, mask[1], 1);
interleave(buf, 5, 7, mask[1], 1);
interleave(buf, 8, 10, mask[1], 1);
interleave(buf, 9, 11, mask[1], 1);
interleave(buf, 12, 14, mask[1], 1);
interleave(buf, 13, 15, mask[1], 1);
interleave(buf, 0, 1, mask[0], 0);
interleave(buf, 2, 3, mask[0], 0);
interleave(buf, 4, 5, mask[0], 0);
interleave(buf, 6, 7, mask[0], 0);
interleave(buf, 8, 9, mask[0], 0);
interleave(buf, 10, 11, mask[0], 0);
interleave(buf, 12, 13, mask[0], 0);
interleave(buf, 14, 15, mask[0], 0);
for (i = 0; i < 16; i++)
for (k = 0; k < 4; k++) {
out[ (4*0 + k)*16 + i ] = (vec128_extract(buf[i], 0) >> (k*16)) & GFMASK;
out[ (4*1 + k)*16 + i ] = (vec128_extract(buf[i], 1) >> (k*16)) & GFMASK;
}
}
/* input: in, field elements in bitsliced form */
/* output: out, field elements in non-bitsliced form */
void bm(uint64_t out[ GFBITS ], vec128 in[ GFBITS ])
{
uint16_t i;
uint16_t N, L;
uint64_t prod[ GFBITS ];
uint64_t in_tmp[ GFBITS ];
CRYPTO_ALIGN(32) uint64_t db[ GFBITS ][ 2 ];
CRYPTO_ALIGN(32) uint64_t BC_tmp[ GFBITS ][ 2 ];
CRYPTO_ALIGN(32) uint64_t BC[ GFBITS ][ 2 ];
uint64_t mask, t;
gf d, b, c0=1;
gf coefs[SYS_T * 2];
// init
BC[0][1] = 0;
BC[0][0] = 1; BC[0][0] <<= 63;
for (i = 1; i < GFBITS; i++)
BC[i][0] = BC[i][1] = 0;
b = 1;
L = 0;
//
get_coefs(coefs, in);
for (i = 0; i < GFBITS; i++)
in_tmp[i] = 0;
for (N = 0; N < SYS_T * 2; N++)
{
// computing d
vec_mul_sp(prod, in_tmp, &BC[0][0]);
update_asm(in_tmp, coefs[N], 8);
d = vec_reduce_asm(prod);
t = gf_mul2(c0, coefs[N], b);
d ^= t & 0xFFFFFFFF;
// 3 cases
mask = crypto_uint64_nonzero_mask(d) & crypto_uint64_leq_mask(L*2, N);
for (i = 0; i < GFBITS; i++)
{
db[i][0] = crypto_int64_bitmod_mask(d, i);
db[i][1] = crypto_int64_bitmod_mask(b, i);
}
vec128_mul((vec128*) BC_tmp, (vec128*) db, (vec128*) BC);
vec_cmov(BC, mask);
update_asm(BC, mask & c0, 16);
for (i = 0; i < GFBITS; i++)
BC[i][1] = BC_tmp[i][0] ^ BC_tmp[i][1];
c0 = t >> 32;
b = (d & mask) | (b & ~mask);
L = ((N+1-L) & mask) | (L & ~mask);
}
c0 = gf_inv(c0);
for (i = 0; i < GFBITS; i++) { out[i] = crypto_int64_bitmod_mask(c0, i); }
vec_mul_sp(out, out, &BC[0][0]);
}