-rw-r--r-- 5220 libmceliece-20241009/crypto_kem/6960119/vec/bm.c raw
/*
This file is for implementating the inversion-free Berlekamp-Massey algorithm
see https://ieeexplore.ieee.org/document/87857
For the implementation strategy, see
https://eprint.iacr.org/2017/793.pdf
*/
// 20240805 djb: more use of cryptoint
// 20240503 djb: use crypto_*_mask functions
// 20221230 djb: add linker lines
// linker define bm
// linker use vec_mul
#include "bm.h"
#include "gf.h"
#include "crypto_uint64.h"
#include "crypto_int64.h"
static inline void vec_cmov(vec * out, vec * in, uint16_t mask)
{
int i;
vec m0, m1;
m0 = vec_set1_16b(mask);
m1 = ~m0;
for (i = 0; i < GFBITS; i++)
{
out[i] = (in[i] & m0) | (out[i] & m1);
out[i] = (in[i] & m0) | (out[i] & m1);
}
}
static inline void interleave(vec *in, int idx0, int idx1, vec *mask, int b)
{
int s = 1 << b;
vec x, y;
x = (in[idx0] & mask[0]) | ((in[idx1] & mask[0]) << s);
y = ((in[idx0] & mask[1]) >> s) | (in[idx1] & mask[1]);
in[idx0] = x;
in[idx1] = y;
}
/* input: in, field elements in bitsliced form */
/* output: out, field elements in non-bitsliced form */
static inline void get_coefs(gf *out, vec *in)
{
int i, k;
vec mask[4][2];
vec buf[16];
for (i = 0; i < 13; i++) buf[i] = in[i];
for (i = 13; i < 16; i++) buf[i] = 0;
mask[0][0] = vec_set1_16b(0x5555);
mask[0][1] = vec_set1_16b(0xAAAA);
mask[1][0] = vec_set1_16b(0x3333);
mask[1][1] = vec_set1_16b(0xCCCC);
mask[2][0] = vec_set1_16b(0x0F0F);
mask[2][1] = vec_set1_16b(0xF0F0);
mask[3][0] = vec_set1_16b(0x00FF);
mask[3][1] = vec_set1_16b(0xFF00);
interleave(buf, 0, 8, mask[3], 3);
interleave(buf, 1, 9, mask[3], 3);
interleave(buf, 2, 10, mask[3], 3);
interleave(buf, 3, 11, mask[3], 3);
interleave(buf, 4, 12, mask[3], 3);
interleave(buf, 5, 13, mask[3], 3);
interleave(buf, 6, 14, mask[3], 3);
interleave(buf, 7, 15, mask[3], 3);
interleave(buf, 0, 4, mask[2], 2);
interleave(buf, 1, 5, mask[2], 2);
interleave(buf, 2, 6, mask[2], 2);
interleave(buf, 3, 7, mask[2], 2);
interleave(buf, 8, 12, mask[2], 2);
interleave(buf, 9, 13, mask[2], 2);
interleave(buf, 10, 14, mask[2], 2);
interleave(buf, 11, 15, mask[2], 2);
interleave(buf, 0, 2, mask[1], 1);
interleave(buf, 1, 3, mask[1], 1);
interleave(buf, 4, 6, mask[1], 1);
interleave(buf, 5, 7, mask[1], 1);
interleave(buf, 8, 10, mask[1], 1);
interleave(buf, 9, 11, mask[1], 1);
interleave(buf, 12, 14, mask[1], 1);
interleave(buf, 13, 15, mask[1], 1);
interleave(buf, 0, 1, mask[0], 0);
interleave(buf, 2, 3, mask[0], 0);
interleave(buf, 4, 5, mask[0], 0);
interleave(buf, 6, 7, mask[0], 0);
interleave(buf, 8, 9, mask[0], 0);
interleave(buf, 10, 11, mask[0], 0);
interleave(buf, 12, 13, mask[0], 0);
interleave(buf, 14, 15, mask[0], 0);
for (i = 0; i < 16; i++)
for (k = 0; k < 4; k++)
out[ k*16 + i ] = (buf[i] >> (k*16)) & GFMASK;
}
static void update(vec in[][GFBITS], const gf e)
{
int i;
vec tmp;
for (i = 0; i < GFBITS; i++)
{
tmp = crypto_int64_bitmod_01(e, i);
in[0][i] = (in[0][i] >> 1) | (in[1][i] << 63);
in[1][i] = (in[1][i] >> 1) | (tmp << 63);
}
}
static inline gf vec_reduce(vec in[][GFBITS])
{
int i;
vec tmp;
gf ret = 0;
for (i = GFBITS-1; i >= 0; i--)
{
tmp = in[0][i] ^ in[1][i];
tmp ^= tmp >> 32;
tmp ^= tmp >> 16;
tmp ^= tmp >> 8;
tmp ^= tmp >> 4;
tmp ^= tmp >> 2;
tmp ^= tmp >> 1;
ret <<= 1;
ret |= crypto_int64_bottombit_01(tmp);
}
return ret;
}
/* input: in, sequence of field elements */
/* output: out, minimal polynomial of in */
//void bm(vec out[][ GFBITS ], vec in[][ GFBITS ])
void bm(vec out[][GFBITS], vec in[][ GFBITS ])
{
int i;
uint16_t N, L;
uint16_t mask;
uint64_t one = 1;
vec prod[2][GFBITS];
vec interval[2][GFBITS];
vec dd[2][GFBITS], bb[2][GFBITS];
vec B[2][GFBITS], C[2][GFBITS];
vec B_tmp[2][GFBITS], C_tmp[2][GFBITS];
gf d, b;
gf coefs[256];
// initialization
get_coefs(&coefs[ 0], in[0]);
get_coefs(&coefs[ 64], in[1]);
get_coefs(&coefs[128], in[2]);
get_coefs(&coefs[192], in[3]);
C[0][0] = 0;
C[1][0] = one << 63;
B[0][0] = 0;
B[1][0] = one << 62;
for (i = 1; i < GFBITS; i++)
C[0][i] = C[1][i] = B[0][i] = B[1][i] = 0;
b = 1;
L = 0;
//
for (i = 0; i < GFBITS; i++)
interval[0][i] = interval[1][i] = 0;
for (N = 0; N < SYS_T*2; N++)
{
update(interval, coefs[N]);
vec_mul(prod[0], C[0], interval[0]);
vec_mul(prod[1], C[1], interval[1]);
d = vec_reduce(prod);
mask = crypto_uint64_nonzero_mask(d) & crypto_uint64_leq_mask(L*2, N);
for (i = 0; i < GFBITS; i++)
{
dd[0][i] = dd[1][i] = vec_setbits(crypto_int64_bitmod_01(d, i));
bb[0][i] = bb[1][i] = vec_setbits(crypto_int64_bitmod_01(b, i));
}
vec_mul(B_tmp[0], dd[0], B[0]);
vec_mul(B_tmp[1], dd[1], B[1]);
vec_mul(C_tmp[0], bb[0], C[0]);
vec_mul(C_tmp[1], bb[1], C[1]);
vec_cmov(B[0], C[0], mask);
vec_cmov(B[1], C[1], mask);
update(B, 0);
for (i = 0; i < GFBITS; i++)
{
C[0][i] = B_tmp[0][i] ^ C_tmp[0][i];
C[1][i] = B_tmp[1][i] ^ C_tmp[1][i];
}
b = (d & mask) | (b & ~mask);
L = ((N+1-L) & mask) | (L & ~mask);
}
for (i = 0; i < GFBITS; i++)
{
out[0][i] = (C[0][i] >> 8) | (C[1][i] << 56);
out[1][i] = C[1][i] >> 8;
}
}