-rw-r--r-- 5222 libmceliece-20241009/crypto_kem/460896/vec/bm.c raw
/* This file is for implementating the inversion-free Berlekamp-Massey algorithm see https://ieeexplore.ieee.org/document/87857 For the implementation strategy, see https://eprint.iacr.org/2017/793.pdf */ // 20240805 djb: more use of cryptoint // 20240503 djb: use crypto_*_mask functions // 20221230 djb: add linker lines // linker define bm // linker use vec_mul #include "bm.h" #include "gf.h" #include "crypto_uint64.h" #include "crypto_int64.h" static inline void vec_cmov(vec * out, vec * in, uint16_t mask) { int i; vec m0, m1; m0 = vec_set1_16b(mask); m1 = ~m0; for (i = 0; i < GFBITS; i++) { out[i] = (in[i] & m0) | (out[i] & m1); out[i] = (in[i] & m0) | (out[i] & m1); } } static inline void interleave(vec *in, int idx0, int idx1, vec *mask, int b) { int s = 1 << b; vec x, y; x = (in[idx0] & mask[0]) | ((in[idx1] & mask[0]) << s); y = ((in[idx0] & mask[1]) >> s) | (in[idx1] & mask[1]); in[idx0] = x; in[idx1] = y; } /* input: in, field elements in bitsliced form */ /* output: out, field elements in non-bitsliced form */ static inline void get_coefs(gf *out, vec *in) { int i, k; vec mask[4][2]; vec buf[16]; for (i = 0; i < 13; i++) buf[i] = in[i]; for (i = 13; i < 16; i++) buf[i] = 0; mask[0][0] = vec_set1_16b(0x5555); mask[0][1] = vec_set1_16b(0xAAAA); mask[1][0] = vec_set1_16b(0x3333); mask[1][1] = vec_set1_16b(0xCCCC); mask[2][0] = vec_set1_16b(0x0F0F); mask[2][1] = vec_set1_16b(0xF0F0); mask[3][0] = vec_set1_16b(0x00FF); mask[3][1] = vec_set1_16b(0xFF00); interleave(buf, 0, 8, mask[3], 3); interleave(buf, 1, 9, mask[3], 3); interleave(buf, 2, 10, mask[3], 3); interleave(buf, 3, 11, mask[3], 3); interleave(buf, 4, 12, mask[3], 3); interleave(buf, 5, 13, mask[3], 3); interleave(buf, 6, 14, mask[3], 3); interleave(buf, 7, 15, mask[3], 3); interleave(buf, 0, 4, mask[2], 2); interleave(buf, 1, 5, mask[2], 2); interleave(buf, 2, 6, mask[2], 2); interleave(buf, 3, 7, mask[2], 2); interleave(buf, 8, 12, mask[2], 2); interleave(buf, 9, 13, mask[2], 2); interleave(buf, 10, 14, mask[2], 2); interleave(buf, 11, 15, mask[2], 2); interleave(buf, 0, 2, mask[1], 1); interleave(buf, 1, 3, mask[1], 1); interleave(buf, 4, 6, mask[1], 1); interleave(buf, 5, 7, mask[1], 1); interleave(buf, 8, 10, mask[1], 1); interleave(buf, 9, 11, mask[1], 1); interleave(buf, 12, 14, mask[1], 1); interleave(buf, 13, 15, mask[1], 1); interleave(buf, 0, 1, mask[0], 0); interleave(buf, 2, 3, mask[0], 0); interleave(buf, 4, 5, mask[0], 0); interleave(buf, 6, 7, mask[0], 0); interleave(buf, 8, 9, mask[0], 0); interleave(buf, 10, 11, mask[0], 0); interleave(buf, 12, 13, mask[0], 0); interleave(buf, 14, 15, mask[0], 0); for (i = 0; i < 16; i++) for (k = 0; k < 4; k++) out[ k*16 + i ] = (buf[i] >> (k*16)) & GFMASK; } static void update(vec in[][GFBITS], const gf e) { int i; vec tmp; for (i = 0; i < GFBITS; i++) { tmp = crypto_int64_bitmod_01(e, i); in[0][i] = (in[0][i] >> 1) | (in[1][i] << 63); in[1][i] = (in[1][i] >> 1) | (tmp << 63); } } static inline gf vec_reduce(vec in[][GFBITS]) { int i; vec tmp; gf ret = 0; for (i = GFBITS-1; i >= 0; i--) { tmp = in[0][i] ^ in[1][i]; tmp ^= tmp >> 32; tmp ^= tmp >> 16; tmp ^= tmp >> 8; tmp ^= tmp >> 4; tmp ^= tmp >> 2; tmp ^= tmp >> 1; ret <<= 1; ret |= crypto_int64_bottombit_01(tmp); } return ret; } /* input: in, sequence of field elements */ /* output: out, minimal polynomial of in */ //void bm(vec out[][ GFBITS ], vec in[][ GFBITS ]) void bm(vec out[][GFBITS], vec in[][ GFBITS ]) { int i; uint16_t N, L; uint16_t mask; uint64_t one = 1; vec prod[2][GFBITS]; vec interval[2][GFBITS]; vec dd[2][GFBITS], bb[2][GFBITS]; vec B[2][GFBITS], C[2][GFBITS]; vec B_tmp[2][GFBITS], C_tmp[2][GFBITS]; gf d, b; gf coefs[256]; // initialization get_coefs(&coefs[ 0], in[0]); get_coefs(&coefs[ 64], in[1]); get_coefs(&coefs[128], in[2]); get_coefs(&coefs[192], in[3]); C[0][0] = 0; C[1][0] = one << 63; B[0][0] = 0; B[1][0] = one << 62; for (i = 1; i < GFBITS; i++) C[0][i] = C[1][i] = B[0][i] = B[1][i] = 0; b = 1; L = 0; // for (i = 0; i < GFBITS; i++) interval[0][i] = interval[1][i] = 0; for (N = 0; N < SYS_T*2; N++) { update(interval, coefs[N]); vec_mul(prod[0], C[0], interval[0]); vec_mul(prod[1], C[1], interval[1]); d = vec_reduce(prod); mask = crypto_uint64_nonzero_mask(d) & crypto_uint64_leq_mask(L*2, N); for (i = 0; i < GFBITS; i++) { dd[0][i] = dd[1][i] = vec_setbits(crypto_int64_bitmod_01(d, i)); bb[0][i] = bb[1][i] = vec_setbits(crypto_int64_bitmod_01(b, i)); } vec_mul(B_tmp[0], dd[0], B[0]); vec_mul(B_tmp[1], dd[1], B[1]); vec_mul(C_tmp[0], bb[0], C[0]); vec_mul(C_tmp[1], bb[1], C[1]); vec_cmov(B[0], C[0], mask); vec_cmov(B[1], C[1], mask); update(B, 0); for (i = 0; i < GFBITS; i++) { C[0][i] = B_tmp[0][i] ^ C_tmp[0][i]; C[1][i] = B_tmp[1][i] ^ C_tmp[1][i]; } b = (d & mask) | (b & ~mask); L = ((N+1-L) & mask) | (L & ~mask); } for (i = 0; i < GFBITS; i++) { out[0][i] = (C[0][i] >> 31) | (C[1][i] << 33); out[1][i] = C[1][i] >> 31; } }