-rw-r--r-- 4705 libmceliece-20241009/crypto_kem/460896/avx/decrypt.c raw
/* This file is for Niederreiter decryption */ // 20240805 djb: more mask usage // 20240503 djb: remove #ifdef KAT ... #endif // 20221230 djb: add linker lines // linker define decrypt // linker use benes bm fft fft_tr // linker use load_bits // linker use vec256_mul_asm vec256_sq vec256_inv #include "decrypt.h" #include "params.h" #include "fft_tr.h" #include "benes.h" #include "util.h" #include "fft.h" #include "bm.h" #include "crypto_int16.h" static void scaling(vec256 out[][GFBITS], vec256 inv[][GFBITS], const unsigned char *sk, vec256 *recv) { int i, j; vec128 sk_int[ GFBITS ]; vec256 eval[32][ GFBITS ]; vec256 tmp[ GFBITS ]; // computing inverses irr_load(sk_int, sk); fft(eval, sk_int); for (i = 0; i < 32; i++) vec256_sq(eval[i], eval[i]); vec256_copy(inv[0], eval[0]); for (i = 1; i < 32; i++) vec256_mul(inv[i], inv[i-1], eval[i]); vec256_inv(tmp, inv[31]); for (i = 30; i >= 0; i--) { vec256_mul(inv[i+1], tmp, inv[i]); vec256_mul(tmp, tmp, eval[i+1]); } vec256_copy(inv[0], tmp); // for (i = 0; i < 32; i++) for (j = 0; j < GFBITS; j++) out[i][j] = vec256_and(inv[i][j], recv[i]); } static void preprocess(vec128 *recv, const unsigned char *s) { int i; unsigned char r[ 1024 ]; for (i = 0; i < SYND_BYTES; i++) r[i] = s[i]; for (i = SYND_BYTES; i < 1024; i++) r[i] = 0; for (i = 0; i < 64; i++) recv[i] = load16(r + i*16); } static void postprocess(unsigned char * e, vec128 * err) { int i; unsigned char error8[ (1 << GFBITS)/8 ]; uint64_t v[2]; for (i = 0; i < 64; i++) { v[0] = vec128_extract(err[i], 0); v[1] = vec128_extract(err[i], 1); store8(error8 + i*16 + 0, v[0]); store8(error8 + i*16 + 8, v[1]); } for (i = 0; i < SYS_N/8; i++) e[i] = error8[i]; } static void scaling_inv(vec256 out[][GFBITS], vec256 inv[][GFBITS], vec256 *recv) { int i, j; for (i = 0; i < 32; i++) for (j = 0; j < GFBITS; j++) out[i][j] = vec256_and(inv[i][j], recv[i]); } static int weight_check(unsigned char * e, vec128 * error) { int i; uint16_t w0 = 0; uint16_t w1 = 0; uint16_t check; for (i = 0; i < 64; i++) { w0 += __builtin_popcountll( vec128_extract(error[i], 0) ); w0 += __builtin_popcountll( vec128_extract(error[i], 1) ); } for (i = 0; i < SYS_N/8; i++) w1 += __builtin_popcountll( e[i] ); check = (w0 ^ SYS_T) | (w1 ^ SYS_T); return -crypto_int16_zero_mask(check); } static uint64_t synd_cmp(vec256 *s0 , vec256 *s1) { int i; vec256 diff; diff = vec256_xor(s0[0], s1[0]); for (i = 1; i < GFBITS; i++) diff = vec256_or(diff, vec256_xor(s0[i], s1[i])); return vec256_testz(diff); } static void reformat_128to256(vec256 * out, vec128 * in) { int i; uint64_t v[4]; for (i = 0; i < 32; i++) { v[0] = vec128_extract(in[2*i+0], 0); v[1] = vec128_extract(in[2*i+0], 1); v[2] = vec128_extract(in[2*i+1], 0); v[3] = vec128_extract(in[2*i+1], 1); out[i] = vec256_set4x(v[0], v[1], v[2], v[3]); } } static void reformat_256to128(vec128 * out, vec256 * in) { int i; uint64_t v[4]; for (i = 0; i < 32; i++) { v[0] = vec256_extract(in[i], 0); v[1] = vec256_extract(in[i], 1); v[2] = vec256_extract(in[i], 2); v[3] = vec256_extract(in[i], 3); out[2*i+0] = vec128_set2x(v[0], v[1]); out[2*i+1] = vec128_set2x(v[2], v[3]); } } /* Niederreiter decryption with the Berlekamp decoder */ /* intput: sk, secret key */ /* s, ciphertext (syndrome) */ /* output: e, error vector */ /* return: 0 for success; 1 for failure */ int decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *s) { int i; uint16_t check_synd; uint16_t check_weight; vec256 inv[ 32 ][ GFBITS ]; vec256 scaled[ 32 ][ GFBITS ]; vec256 eval[32][ GFBITS ]; vec128 error128[ 64 ]; vec256 error256[ 32 ]; vec256 s_priv[ GFBITS ]; vec256 s_priv_cmp[ GFBITS ]; vec128 locator[ GFBITS ]; vec128 recv128[ 64 ]; vec256 recv256[ 32 ]; vec256 allone; vec128 bits_int[25][32]; // Berlekamp decoder preprocess(recv128, s); load_bits(bits_int, sk + IRR_BYTES); benes(recv128, bits_int, 1); reformat_128to256(recv256, recv128); scaling(scaled, inv, sk, recv256); fft_tr(s_priv, scaled); bm(locator, s_priv); fft(eval, locator); // reencryption and weight check allone = vec256_set1_16b(0xFFFF); for (i = 0; i < 32; i++) { error256[i] = vec256_or_reduce(eval[i]); error256[i] = vec256_xor(error256[i], allone); } scaling_inv(scaled, inv, error256); fft_tr(s_priv_cmp, scaled); check_synd = synd_cmp(s_priv, s_priv_cmp); // reformat_256to128(error128, error256); benes(error128, bits_int, 0); postprocess(e, error128); check_weight = weight_check(e, error128); return 1 - (check_synd & check_weight); }