-rw-r--r-- 3501 libmceliece-20241009/crypto_kem/348864/vec/decrypt.c raw
/*
This file is for Niederreiter decryption
*/
// 20240805 djb: more cryptoint usage
// 20240503 djb: remove #ifdef KAT ... #endif
// 20221230 djb: add linker lines
// linker define decrypt
// linker use benes bm fft fft_tr
// linker use vec_mul vec_sq vec_inv
#include "decrypt.h"
#include "params.h"
#include "fft_tr.h"
#include "benes.h"
#include "util.h"
#include "fft.h"
#include "vec.h"
#include "bm.h"
#include "crypto_int16.h"
#include "crypto_int8.h"
#include "crypto_int64.h"
static void scaling(vec out[][GFBITS], vec inv[][GFBITS], const unsigned char *sk, vec *recv)
{
int i, j;
vec irr_int[ GFBITS ];
vec eval[64][ GFBITS ];
vec tmp[ GFBITS ];
//
irr_load(irr_int, sk);
fft(eval, irr_int);
for (i = 0; i < 64; i++)
vec_sq(eval[i], eval[i]);
vec_copy(inv[0], eval[0]);
for (i = 1; i < 64; i++)
vec_mul(inv[i], inv[i-1], eval[i]);
vec_inv(tmp, inv[63]);
for (i = 62; i >= 0; i--)
{
vec_mul(inv[i+1], tmp, inv[i]);
vec_mul(tmp, tmp, eval[i+1]);
}
vec_copy(inv[0], tmp);
//
for (i = 0; i < 64; i++)
for (j = 0; j < GFBITS; j++)
out[i][j] = inv[i][j] & recv[i];
}
static void preprocess(vec *recv, const unsigned char *s)
{
int i;
unsigned char r[ 512 ];
for (i = 0; i < SYND_BYTES; i++)
r[i] = s[i];
for (i = SYND_BYTES; i < 512; i++)
r[i] = 0;
for (i = 0; i < 64; i++)
recv[i] = load8(r + i*8);
}
static void postprocess(unsigned char * e, vec * err)
{
int i;
unsigned char error8[ (1 << GFBITS)/8 ];
for (i = 0; i < 64; i++)
store8(error8 + i*8, err[i]);
for (i = 0; i < SYS_N/8; i++)
e[i] = error8[i];
}
static void scaling_inv(vec out[][GFBITS], vec inv[][GFBITS], vec *recv)
{
int i, j;
for (i = 0; i < 64; i++)
for (j = 0; j < GFBITS; j++)
out[i][j] = inv[i][j] & recv[i];
}
static int weight_check(unsigned char * e, vec * error)
{
int i;
uint16_t w0 = 0;
uint16_t w1 = 0;
uint16_t check;
for (i = 0; i < (1 << GFBITS); i++)
w0 += crypto_int64_bitmod_01(error[i/64], i);
for (i = 0; i < SYS_N; i++)
w1 += crypto_int8_bitmod_01(e[i/8], i);
check = (w0 ^ SYS_T) | (w1 ^ SYS_T);
return -crypto_int16_zero_mask(check);
}
static uint16_t synd_cmp(vec s0[][ GFBITS ] , vec s1[][ GFBITS ])
{
int i, j;
vec diff = 0;
for (i = 0; i < 2; i++)
for (j = 0; j < GFBITS; j++)
diff |= (s0[i][j] ^ s1[i][j]);
return vec_testz(diff);
}
/* Niederreiter decryption with the Berlekamp decoder */
/* intput: sk, secret key */
/* s, ciphertext (syndrome) */
/* output: e, error vector */
/* return: 0 for success; 1 for failure */
int decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *s)
{
int i;
uint16_t check_synd;
uint16_t check_weight;
vec inv[ 64 ][ GFBITS ];
vec scaled[ 64 ][ GFBITS ];
vec eval[ 64 ][ GFBITS ];
vec error[ 64 ];
vec s_priv[ 2 ][ GFBITS ];
vec s_priv_cmp[ 2 ][ GFBITS ];
vec locator[ GFBITS ];
vec recv[ 64 ];
vec allone;
// Berlekamp decoder
preprocess(recv, s);
benes(recv, sk + IRR_BYTES, 1);
scaling(scaled, inv, sk, recv);
fft_tr(s_priv, scaled);
bm(locator, s_priv);
fft(eval, locator);
// reencryption and weight check
allone = vec_setbits(1);
for (i = 0; i < 64; i++)
{
error[i] = vec_or_reduce(eval[i]);
error[i] ^= allone;
}
scaling_inv(scaled, inv, error);
fft_tr(s_priv_cmp, scaled);
check_synd = synd_cmp(s_priv, s_priv_cmp);
//
benes(error, sk + IRR_BYTES, 0);
postprocess(e, error);
check_weight = weight_check(e, error);
return 1 - (check_synd & check_weight);
}