#define update_asm CRYPTO_SHARED_NAMESPACE(update_asm) #define _update_asm _CRYPTO_SHARED_NAMESPACE(update_asm) #define vec_reduce_asm CRYPTO_SHARED_NAMESPACE(vec_reduce_asm) #define _vec_reduce_asm _CRYPTO_SHARED_NAMESPACE(vec_reduce_asm) /* This file is for implementating the inversion-free Berlekamp-Massey algorithm see https://ieeexplore.ieee.org/document/87857 For the implementation strategy, see https://eprint.iacr.org/2017/793.pdf */ // 20240805 djb: more cryptoint usage // 20240530 djb: CRYPTO_ALIGN instead of ALIGN // 20240508 djb: include vec{128,256}_gf.h // 20240503 djb: use crypto_*_mask functions // 20221231 djb: ALIGN(32) for some arrays; tnx thom wiggers // 20221230 djb: add linker lines // linker define bm // linker use update_asm vec_reduce_asm // linker use vec128_mul_asm // linker use vec256_mul_asm // linker use gf_inv // linker use gf_mul2 #include "bm.h" #include "gf.h" #include "vec128_gf.h" #include "vec256_gf.h" #include "params.h" #include "crypto_uint64.h" #include #include "crypto_int64.h" extern gf vec_reduce_asm(vec128 *); extern void update_asm(void *, gf, int); static inline void vec128_cmov(vec128 out[][2], uint16_t mask) { int i; vec128 v0, v1; vec128 m0 = vec128_set1_16b( mask); vec128 m1 = vec128_set1_16b(~mask); for (i = 0; i < GFBITS; i++) { v0 = vec128_and(out[i][1], m0); v1 = vec128_and(out[i][0], m1); out[i][0] = vec128_or(v0, v1); } } static inline void interleave(vec256 *in, int idx0, int idx1, vec256 *mask, int b) { int s = 1 << b; vec256 x, y; x = vec256_or(vec256_and(in[idx0], mask[0]), vec256_sll_4x(vec256_and(in[idx1], mask[0]), s)); y = vec256_or(vec256_srl_4x(vec256_and(in[idx0], mask[1]), s), vec256_and(in[idx1], mask[1])); in[idx0] = x; in[idx1] = y; } /* input: in, field elements in bitsliced form */ /* output: out, field elements in non-bitsliced form */ static inline void get_coefs(gf *out, vec256 *in) { int i, k; vec256 mask[4][2]; vec256 buf[16]; for (i = 0; i < 13; i++) buf[i] = in[i]; for (i = 13; i < 16; i++) buf[i] = vec256_setzero(); mask[0][0] = vec256_set1_16b(0x5555); mask[0][1] = vec256_set1_16b(0xAAAA); mask[1][0] = vec256_set1_16b(0x3333); mask[1][1] = vec256_set1_16b(0xCCCC); mask[2][0] = vec256_set1_16b(0x0F0F); mask[2][1] = vec256_set1_16b(0xF0F0); mask[3][0] = vec256_set1_16b(0x00FF); mask[3][1] = vec256_set1_16b(0xFF00); interleave(buf, 0, 8, mask[3], 3); interleave(buf, 1, 9, mask[3], 3); interleave(buf, 2, 10, mask[3], 3); interleave(buf, 3, 11, mask[3], 3); interleave(buf, 4, 12, mask[3], 3); interleave(buf, 5, 13, mask[3], 3); interleave(buf, 6, 14, mask[3], 3); interleave(buf, 7, 15, mask[3], 3); interleave(buf, 0, 4, mask[2], 2); interleave(buf, 1, 5, mask[2], 2); interleave(buf, 2, 6, mask[2], 2); interleave(buf, 3, 7, mask[2], 2); interleave(buf, 8, 12, mask[2], 2); interleave(buf, 9, 13, mask[2], 2); interleave(buf, 10, 14, mask[2], 2); interleave(buf, 11, 15, mask[2], 2); interleave(buf, 0, 2, mask[1], 1); interleave(buf, 1, 3, mask[1], 1); interleave(buf, 4, 6, mask[1], 1); interleave(buf, 5, 7, mask[1], 1); interleave(buf, 8, 10, mask[1], 1); interleave(buf, 9, 11, mask[1], 1); interleave(buf, 12, 14, mask[1], 1); interleave(buf, 13, 15, mask[1], 1); interleave(buf, 0, 1, mask[0], 0); interleave(buf, 2, 3, mask[0], 0); interleave(buf, 4, 5, mask[0], 0); interleave(buf, 6, 7, mask[0], 0); interleave(buf, 8, 9, mask[0], 0); interleave(buf, 10, 11, mask[0], 0); interleave(buf, 12, 13, mask[0], 0); interleave(buf, 14, 15, mask[0], 0); for (i = 0; i < 16; i++) for (k = 0; k < 4; k++) { out[ (4*0 + k)*16 + i ] = (vec256_extract(buf[i], 0) >> (k*16)) & GFMASK; out[ (4*1 + k)*16 + i ] = (vec256_extract(buf[i], 1) >> (k*16)) & GFMASK; out[ (4*2 + k)*16 + i ] = (vec256_extract(buf[i], 2) >> (k*16)) & GFMASK; out[ (4*3 + k)*16 + i ] = (vec256_extract(buf[i], 3) >> (k*16)) & GFMASK; } } /* input: in, sequence of field elements */ /* output: out, minimal polynomial of in */ void bm(vec128 *out, vec256 *in) { int i; uint16_t N, L; uint16_t mask; uint64_t one = 1, t; vec128 prod[ GFBITS ]; vec128 interval[GFBITS]; CRYPTO_ALIGN(32) vec128 db[ GFBITS ][ 2 ]; CRYPTO_ALIGN(32) vec128 BC_tmp[ GFBITS ][ 2 ]; CRYPTO_ALIGN(32) vec128 BC[ GFBITS ][ 2 ]; gf d, b, c0 = 1; gf coefs[256]; // initialization get_coefs(coefs, in); BC[0][0] = vec128_set2x(0, one << 63); BC[0][1] = vec128_setzero(); for (i = 1; i < GFBITS; i++) BC[i][0] = BC[i][1] = vec128_setzero(); b = 1; L = 0; // for (i = 0; i < GFBITS; i++) interval[i] = vec128_setzero(); for (N = 0; N < 256; N++) { vec128_mul_asm(prod, interval, BC[0]+1, 32); update_asm(interval, coefs[N], 16); d = vec_reduce_asm(prod); t = gf_mul2(c0, coefs[N], b); d ^= t & 0xFFFFFFFF; mask = crypto_uint64_nonzero_mask(d) & crypto_uint64_leq_mask(L*2, N); for (i = 0; i < GFBITS; i++) { db[i][0] = vec128_setbits(crypto_int64_bitmod_01(d, i)); db[i][1] = vec128_setbits(crypto_int64_bitmod_01(b, i)); } vec256_mul((vec256*) BC_tmp, (vec256*) db, (vec256*) BC); vec128_cmov(BC, mask); update_asm(BC, c0 & mask, 32); for (i = 0; i < GFBITS; i++) BC[i][1] = vec128_xor(BC_tmp[i][0], BC_tmp[i][1]); c0 = t >> 32; b = (d & mask) | (b & ~mask); L = ((N+1-L) & mask) | (L & ~mask); } c0 = gf_inv(c0); for (i = 0; i < GFBITS; i++) prod[i] = vec128_setbits(crypto_int64_bitmod_01(c0, i)); vec128_mul_asm(out, prod, BC[0]+1, 32); }