/* This file is for transpose of the Gao-Mateer FFT Functions with names ending with _tr are (roughly) the transpose of the corresponding functions in fft.c For the implementation strategy, see https://eprint.iacr.org/2017/793.pdf */ // 20240805 djb: more cryptoint usage // 20240508 djb: include vec{128,256}_gf.h // 20221230 djb: split these arrays into separate .c files // 20221230 djb: rename consts array as fft_consts // 20221230 djb: rename s array as fft_scalars_4x // 20221230 djb: add linker lines // linker define fft_tr // linker use vec128_mul_asm // linker use vec256_mul_asm // linker use vec256_ama_asm // linker use transpose_64x256_sp_asm // linker use fft_scalars_4x fft_consts #include "vec128_gf.h" #include "vec256_gf.h" #include "fft_tr.h" #include "fft_scalars_4x.h" #include "fft_consts.h" #include "transpose.h" #include #include "crypto_int64.h" static void radix_conversions_tr(vec256 *in) { int i, j, k; vec256 t; uint64_t v[4]; const vec256 mask[6][2] = { {vec256_set4x(0x2222222222222222, 0x2222222222222222, 0x2222222222222222, 0x2222222222222222), vec256_set4x(0x4444444444444444, 0x4444444444444444, 0x4444444444444444, 0x4444444444444444)}, {vec256_set4x(0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C, 0x0C0C0C0C0C0C0C0C), vec256_set4x(0x3030303030303030, 0x3030303030303030, 0x3030303030303030, 0x3030303030303030)}, {vec256_set4x(0x00F000F000F000F0, 0x00F000F000F000F0, 0x00F000F000F000F0, 0x00F000F000F000F0), vec256_set4x(0x0F000F000F000F00, 0x0F000F000F000F00, 0x0F000F000F000F00, 0x0F000F000F000F00)}, {vec256_set4x(0x0000FF000000FF00, 0x0000FF000000FF00, 0x0000FF000000FF00, 0x0000FF000000FF00), vec256_set4x(0x00FF000000FF0000, 0x00FF000000FF0000, 0x00FF000000FF0000, 0x00FF000000FF0000)}, {vec256_set4x(0x00000000FFFF0000, 0x00000000FFFF0000, 0x00000000FFFF0000, 0x00000000FFFF0000), vec256_set4x(0x0000FFFF00000000, 0x0000FFFF00000000, 0x0000FFFF00000000, 0x0000FFFF00000000)}, {vec256_set4x(0xFFFFFFFF00000000, 0xFFFFFFFF00000000, 0xFFFFFFFF00000000, 0xFFFFFFFF00000000), vec256_set4x(0x00000000FFFFFFFF, 0x00000000FFFFFFFF, 0x00000000FFFFFFFF, 0x00000000FFFFFFFF)} }; // for (j = 6; j >= 0; j--) { if (j < 6) { vec256_mul(in, in, fft_scalars_4x[j]); // scaling } for (k = j; k <= 4; k++) for (i = 0; i < GFBITS; i++) { t = vec256_and(in[i], mask[k][0]); t = vec256_sll_4x(t, 1 << k); in[i] = vec256_xor(in[i], t); t = vec256_and(in[i], mask[k][1]); t = vec256_sll_4x(t, 1 << k); in[i] = vec256_xor(in[i], t); } if (j <= 5) for (i = 0; i < GFBITS; i++) { v[0] = vec256_extract(in[i], 0); v[1] = vec256_extract(in[i], 1); v[2] = vec256_extract(in[i], 2); v[3] = vec256_extract(in[i], 3); v[1] ^= v[0] >> 32; v[1] ^= v[1] << 32; v[3] ^= v[2] >> 32; v[3] ^= v[3] << 32; in[i] = vec256_set4x(v[0], v[1], v[2], v[3]); } for (i = 0; i < GFBITS; i++) { v[0] = vec256_extract(in[i], 0); v[1] = vec256_extract(in[i], 1); v[2] = vec256_extract(in[i], 2); v[3] = vec256_extract(in[i], 3); v[2] ^= v[1]; v[3] ^= v[2]; in[i] = vec256_set4x(v[0], v[1], v[2], v[3]); } } } static void butterflies_tr(vec256 *out, vec256 in[][ GFBITS ]) { int i, j, k, s, b; vec256 t0[ GFBITS ]; vec256 t1[ GFBITS ]; vec256 t; vec128 out128[ GFBITS ][ 2 ]; vec128 tmp[ GFBITS ]; union { vec128 v[6][ GFBITS+1 ]; vec256 V[6][ (GFBITS+1)/2 ]; } pre; union { vec128 v[64][ 2 ]; vec256 V[64]; } buf; uint64_t v[4]; uint64_t consts_ptr = 33; const unsigned char reversal[] = { 0, 32, 16, 48, 8, 40, 24, 56, 4, 36, 20, 52, 12, 44, 28, 60, 2, 34, 18, 50, 10, 42, 26, 58, 6, 38, 22, 54, 14, 46, 30, 62, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63 }; const uint16_t beta[6] = {5246, 5306, 6039, 6685, 4905, 6755}; // butterflies for (i = 4; i >= 0; i--) { s = 1 << i; consts_ptr -= s; for (j = 0; j < 32; j += 2*s) for (k = j; k < j+s; k++) { vec256_ama_asm(in[k], in[k+s], fft_consts[ consts_ptr + (k-j) ]); } } for (k = 0; k < 32; k+=2) { for (b = 0; b < GFBITS; b++) t0[b] = vec256_unpack_low(in[k][b], in[k+1][b]); for (b = 0; b < GFBITS; b++) t1[b] = vec256_unpack_high(in[k][b], in[k+1][b]); vec256_ama_asm(t0, t1, fft_consts[1]); for (b = 0; b < GFBITS; b++) in[k][b] = vec256_unpack_low(t0[b], t1[b]); for (b = 0; b < GFBITS; b++) in[k+1][b] = vec256_unpack_high(t0[b], t1[b]); for (b = 0; b < GFBITS; b++) t0[b] = vec256_unpack_low_2x(in[k][b], in[k+1][b]); for (b = 0; b < GFBITS; b++) t1[b] = vec256_unpack_high_2x(in[k][b], in[k+1][b]); vec256_ama_asm(t0, t1, fft_consts[0]); for (b = 0; b < GFBITS; b++) in[k+0][b] = vec256_unpack_low_2x(t0[b], t1[b]); for (b = 0; b < GFBITS; b++) in[k+1][b] = vec256_unpack_high_2x(t0[b], t1[b]); } // boradcast for (i = 0; i < GFBITS; i+=2) { // transpose for (k = 0; k < 32; k++) { if (i != GFBITS-1) { buf.v[ reversal[2*k+0] ][1] = vec256_extract2x(in[ k ][i+1], 0); buf.v[ reversal[2*k+1] ][1] = vec256_extract2x(in[ k ][i+1], 1); } buf.v[ reversal[2*k+0] ][0] = vec256_extract2x(in[ k ][i+0], 0); buf.v[ reversal[2*k+1] ][0] = vec256_extract2x(in[ k ][i+0], 1); } transpose_64x256_sp(buf.V); // #define xor vec256_xor pre.V[0][i/2] = buf.V[32]; buf.V[33] = xor(buf.V[33], buf.V[32]); pre.V[1][i/2] = buf.V[33]; buf.V[35] = xor(buf.V[35], buf.V[33]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[35]); buf.V[34] = xor(buf.V[34], buf.V[35]); pre.V[2][i/2] = buf.V[34]; buf.V[38] = xor(buf.V[38], buf.V[34]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[38]); buf.V[39] = xor(buf.V[39], buf.V[38]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[39]); buf.V[37] = xor(buf.V[37], buf.V[39]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[37]); buf.V[36] = xor(buf.V[36], buf.V[37]); pre.V[3][i/2] = buf.V[36]; buf.V[44] = xor(buf.V[44], buf.V[36]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[44]); buf.V[45] = xor(buf.V[45], buf.V[44]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[45]); buf.V[47] = xor(buf.V[47], buf.V[45]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[47]); buf.V[46] = xor(buf.V[46], buf.V[47]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[46]); buf.V[42] = xor(buf.V[42], buf.V[46]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[42]); buf.V[43] = xor(buf.V[43], buf.V[42]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[43]); buf.V[41] = xor(buf.V[41], buf.V[43]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[41]); buf.V[40] = xor(buf.V[40], buf.V[41]); pre.V[4][i/2] = buf.V[40]; buf.V[56] = xor(buf.V[56], buf.V[40]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[56]); buf.V[57] = xor(buf.V[57], buf.V[56]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[57]); buf.V[59] = xor(buf.V[59], buf.V[57]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[59]); buf.V[58] = xor(buf.V[58], buf.V[59]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[58]); buf.V[62] = xor(buf.V[62], buf.V[58]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[62]); buf.V[63] = xor(buf.V[63], buf.V[62]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[63]); buf.V[61] = xor(buf.V[61], buf.V[63]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[61]); buf.V[60] = xor(buf.V[60], buf.V[61]); pre.V[3][i/2] = xor(pre.V[3][i/2], buf.V[60]); buf.V[52] = xor(buf.V[52], buf.V[60]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[52]); buf.V[53] = xor(buf.V[53], buf.V[52]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[53]); buf.V[55] = xor(buf.V[55], buf.V[53]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[55]); buf.V[54] = xor(buf.V[54], buf.V[55]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[54]); buf.V[50] = xor(buf.V[50], buf.V[54]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[50]); buf.V[51] = xor(buf.V[51], buf.V[50]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[51]); buf.V[49] = xor(buf.V[49], buf.V[51]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[49]); buf.V[48] = xor(buf.V[48], buf.V[49]); pre.V[5][i/2] = buf.V[48]; buf.V[16] = xor(buf.V[16], buf.V[48]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[16]); buf.V[17] = xor(buf.V[17], buf.V[16]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[17]); buf.V[19] = xor(buf.V[19], buf.V[17]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[19]); buf.V[18] = xor(buf.V[18], buf.V[19]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[18]); buf.V[22] = xor(buf.V[22], buf.V[18]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[22]); buf.V[23] = xor(buf.V[23], buf.V[22]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[23]); buf.V[21] = xor(buf.V[21], buf.V[23]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[21]); buf.V[20] = xor(buf.V[20], buf.V[21]); pre.V[3][i/2] = xor(pre.V[3][i/2], buf.V[20]); buf.V[28] = xor(buf.V[28], buf.V[20]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[28]); buf.V[29] = xor(buf.V[29], buf.V[28]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[29]); buf.V[31] = xor(buf.V[31], buf.V[29]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[31]); buf.V[30] = xor(buf.V[30], buf.V[31]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[30]); buf.V[26] = xor(buf.V[26], buf.V[30]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[26]); buf.V[27] = xor(buf.V[27], buf.V[26]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[27]); buf.V[25] = xor(buf.V[25], buf.V[27]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[25]); buf.V[24] = xor(buf.V[24], buf.V[25]); pre.V[4][i/2] = xor(pre.V[4][i/2], buf.V[24]); buf.V[8] = xor(buf.V[8], buf.V[24]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[8]); buf.V[9] = xor(buf.V[9], buf.V[8]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[9]); buf.V[11] = xor(buf.V[11], buf.V[9]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[11]); buf.V[10] = xor(buf.V[10], buf.V[11]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[10]); buf.V[14] = xor(buf.V[14], buf.V[10]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[14]); buf.V[15] = xor(buf.V[15], buf.V[14]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[15]); buf.V[13] = xor(buf.V[13], buf.V[15]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[13]); buf.V[12] = xor(buf.V[12], buf.V[13]); pre.V[3][i/2] = xor(pre.V[3][i/2], buf.V[12]); buf.V[4] = xor(buf.V[4], buf.V[12]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[4]); buf.V[5] = xor(buf.V[5], buf.V[4]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[5]); buf.V[7] = xor(buf.V[7], buf.V[5]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[7]); buf.V[6] = xor(buf.V[6], buf.V[7]); pre.V[2][i/2] = xor(pre.V[2][i/2], buf.V[6]); buf.V[2] = xor(buf.V[2], buf.V[6]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[2]); buf.V[3] = xor(buf.V[3], buf.V[2]); pre.V[1][i/2] = xor(pre.V[1][i/2], buf.V[3]); buf.V[1] = xor(buf.V[1], buf.V[3]); pre.V[0][i/2] = xor(pre.V[0][i/2], buf.V[1]); t = xor(buf.V[0], buf.V[1]); if (i != GFBITS-1) out128[i+1][0] = vec256_extract2x(t, 1); out128[i+0][0] = vec256_extract2x(t, 0); #undef xor } // for (j = 0; j < GFBITS; j++) tmp[j] = vec128_setbits(crypto_int64_bitmod_01(beta[0], j)); vec128_mul(tmp, pre.v[0], tmp); for (b = 0; b < GFBITS; b++) out128[b][1] = tmp[b]; for (i = 1; i < 6; i++) { for (j = 0; j < GFBITS; j++) tmp[j] = vec128_setbits(crypto_int64_bitmod_01(beta[i], j)); vec128_mul(tmp, pre.v[i], tmp); for (b = 0; b < GFBITS; b++) out128[b][1] = vec128_xor(out128[b][1], tmp[b]); } for (b = 0; b < GFBITS; b++) { v[0] = vec128_extract(out128[b][0], 0); v[1] = vec128_extract(out128[b][0], 1); v[2] = vec128_extract(out128[b][1], 0); v[3] = vec128_extract(out128[b][1], 1); out[b] = vec256_set4x(v[0], v[1], v[2], v[3]); } } void fft_tr(vec256 *out, vec256 in[][ GFBITS ]) { butterflies_tr(out, in); radix_conversions_tr(out); }