-rw-r--r-- 11002 libmceliece-20240726/crypto_kem/348864f/avx/pk_gen.c raw
/* This file is for public-key generation */ // 20240611 djb: using crypto_uint64_bottomzeros_num // 20240608 djb: using crypto_*_mask // 20240508 djb: switch to crypto_sort_int32 // 20240508 djb: switch to crypto_sort_int64 // 20230105 tony: use merge exchange in sort_rows(); fewer lines for minmax_rows() // 20221231 djb: remove unused min definition // 20221231 djb: more 0 initialization to clarify data flow; tnx thom wiggers // 20221230 djb: add linker lines // linker define pk_gen // linker use fft vec256_inv vec256_mul_asm #include "pk_gen.h" #include "controlbits.h" #include "transpose.h" #include "crypto_sort_int64.h" #include "crypto_sort_int32.h" #include "params.h" #include "util.h" #include "fft.h" #include "crypto_declassify.h" #include "crypto_int16.h" #include "crypto_uint64.h" static crypto_uint64 uint64_is_equal_declassify(uint64_t t,uint64_t u) { crypto_uint64 mask = crypto_uint64_equal_mask(t,u); crypto_declassify(&mask,sizeof mask); return mask; } static crypto_uint64 uint64_is_zero_declassify(uint64_t t) { crypto_uint64 mask = crypto_uint64_zero_mask(t); crypto_declassify(&mask,sizeof mask); return mask; } #include <stdint.h> #define nBlocks_I ((PK_NROWS + 255) / 256) #define par_width 11 /* set m to 11...1 if the i-th bit of x is 0 and the i-th bit of y is 1 */ /* set m to 00...0 otherwise */ static inline void extract_01_masks(uint16_t *m, uint64_t *x, uint64_t *y, int i) { *m = crypto_uint64_bitmod_mask(y[ i>>6 ] & ~x[ i>>6 ], i); } /* return a 128-bit vector of which each bits is set to the i-th bit of v */ static inline vec256 extract_mask256(uint64_t v[], int i) { uint32_t mask = crypto_uint64_bitmod_mask(v[ i>>6 ], i); return vec256_set1_32b(mask); } // swap x and y if m = 11...1 static inline void int16_cswap(int16_t *x, int16_t *y, uint16_t m) { int16_t d; d = *x ^ *y; d &= m; *x ^= d; *y ^= d; } // swap x and y if m = 11...1 static inline void uint16_cswap(uint16_t *x, uint16_t *y, uint16_t m) { uint16_t d; d = *x ^ *y; d &= m; *x ^= d; *y ^= d; } // swap x and y if m = 11...1 static inline void vec256_cswap(vec256 *x, vec256 *y, vec256 m) { vec256 d; d = *x ^ *y; d &= m; *x ^= d; *y ^= d; } /* swap x[i0] and x[i1] if x[i1] > x[i0] */ /* swap mat[i0] and mat[i1] if x[i1] > x[i0] */ static inline void minmax_rows(uint16_t *x, vec256 (*mat)[par_width], int i0, int i1) { int i; uint16_t m; vec256 mm; m = x[i1] - x[i0]; m >>= 15; m = -m; mm = vec256_set1_16b(m); uint16_cswap(&x[i0], &x[i1], m); for (i = 0; i < par_width; i++) vec256_cswap(&mat[i0][i], &mat[i1][i], mm); } static void sort_rows(int n, uint16_t *x, vec256 (*mat)[par_width]) { int t = 1; while ((1 << t)*2 < n) t++; for (int j = t-1; j >= 0; j--) { int p = 1 << j, q = 1 << (t-1), r = 0, d = p; while (1) { for (int i = 0; i < n-d; i++) if ((i & p) == r) minmax_rows(x, mat, i, i+d); if (q != p) { d = q - p; q = q / 2; r = p; } else break; } } } /* extract numbers represented in bitsliced form */ static void de_bitslicing(uint64_t * out, const vec256 in[][GFBITS]) { int i, j, r; uint64_t u = 0; for (i = 0; i < (1 << GFBITS); i++) out[i] = 0 ; for (i = 0; i < 16; i++) for (j = GFBITS-1; j >= 0; j--) { u = vec256_extract(in[i][j], 0); for (r = 0; r < 64; r++) { out[i*256 + 0*64 + r] <<= 1; out[i*256 + 0*64 + r] |= (u >> r) & 1; } u = vec256_extract(in[i][j], 1); for (r = 0; r < 64; r++) { out[i*256 + 1*64 + r] <<= 1; out[i*256 + 1*64 + r] |= (u >> r) & 1; } u = vec256_extract(in[i][j], 2); for (r = 0; r < 64; r++) { out[i*256 + 2*64 + r] <<= 1; out[i*256 + 2*64 + r] |= (u >> r) & 1; } u = vec256_extract(in[i][j], 3); for (r = 0; r < 64; r++) { out[i*256 + 3*64 + r] <<= 1; out[i*256 + 3*64 + r] |= (u >> r) & 1; } } } /* convert numbers into bitsliced form */ static void to_bitslicing_2x(vec256 out0[][GFBITS], vec256 out1[][GFBITS], const uint64_t * in) { int i, j, k, r; uint64_t u[2][4]; for (j = 0;j < 2;++j) for (k = 0;k < 4;++k) u[j][k] = 0; for (i = 0; i < 16; i++) for (j = GFBITS-1; j >= 0; j--) { for (k = 0; k < 4; k++) for (r = 63; r >= 0; r--) { u[0][k] <<= 1; u[0][k] |= (in[i*256 + k*64 + r] >> (GFBITS-1-j)) & 1; u[1][k] <<= 1; u[1][k] |= (in[i*256 + k*64 + r] >> (j + GFBITS)) & 1; } out0[i][j] = vec256_set4x(u[0][0], u[0][1], u[0][2], u[0][3]); out1[i][j] = vec256_set4x(u[1][0], u[1][1], u[1][2], u[1][3]); } } /* swap columns on mat based on the pivots in the 32 x 64 matrix */ /* update permutation pi*/ /* store the positions of pivots in pivots */ static int mov_columns(uint64_t mat[][ (nBlocks_I+1)*4 ], int16_t * pi, uint64_t * pivots) { int i, j, pivot_col[32]; uint64_t buf[32], t, d, allone = -1, one = 1; int row = PK_NROWS - 32; int block_idx = row/64; // extract the 32x64 matrix for (i = 0; i < 32; i++) buf[i] = (mat[ row + i ][ block_idx + 0 ] >> 32) | (mat[ row + i ][ block_idx + 1 ] << 32); // compute the column indices of pivots by Gaussian elimination. // the indices are stored in ctz_list *pivots = 0; for (i = 0; i < 32; i++) { t = buf[i]; for (j = i+1; j < 32; j++) t |= buf[j]; if (uint64_is_zero_declassify(t)) return -1; // return if buf is not full rank pivot_col[i] = crypto_uint64_bottomzeros_num(t); *pivots |= one << pivot_col[i]; for (j = i+1; j < 32; j++) buf[i] ^= buf[j] & ~crypto_uint64_bitmod_mask(buf[i],pivot_col[i]); for (j = i+1; j < 32; j++) buf[j] ^= buf[i] & crypto_uint64_bitmod_mask(buf[j],pivot_col[i]); } // updating permutation for (i = 0; i < 32; i++) for (j = i+1; j < 64; j++) int16_cswap(&pi[ row + i ], &pi[ row + j ], crypto_int16_equal_mask(j, pivot_col[i])); // moving columns of mat according to the column indices of pivots for (i = 0; i < PK_NROWS; i++) { t = (mat[ i ][ block_idx + 0 ] >> 32) | (mat[ i ][ block_idx + 1 ] << 32); for (j = 0; j < 32; j++) { d = t >> j; d ^= t >> pivot_col[j]; d &= 1; t ^= d << pivot_col[j]; t ^= d << j; } mat[ i ][ block_idx + 0 ] = (mat[ i ][ block_idx + 0 ] & (allone >> 32)) | (t << 32); mat[ i ][ block_idx + 1 ] = (mat[ i ][ block_idx + 1 ] & (allone << 32)) | (t >> 32); } return 0; } /* y[pi[i]] = x[i] */ /* requires pi to be a permutation */ static void composeinv(int n, uint16_t y[n], uint16_t x[n], uint16_t pi[n]) { int i; int32_t t[n]; for (i = 0;i < n;++i) { t[i] = pi[i]; t[i] <<= 16; t[i] |= x[i]; } crypto_sort_int32(t,n); for (i = 0;i < n;++i) y[i] = t[i] & 0xFFFF; } /* input: irr, an irreducible polynomial */ /* perm, a permutation represented as an array of 32-bit numbers */ /* pi, same permutation represented as an array of 16-bit numbers */ /* output: pk, the public key*/ /* pivots, positions of pivots in the 32 x 64 matrix */ /* return: 0 if pk is successfully generated, -1 otherwise */ int pk_gen(unsigned char * pk, const unsigned char * irr, uint32_t * perm, int16_t * pi, uint64_t * pivots) { int i, j, k, b; int row, c; union { uint64_t w[ PK_NROWS ][ (nBlocks_I+1)*4 ]; vec256 v[ PK_NROWS ][ nBlocks_I+1 ]; } mat; union { uint64_t w[ PK_NROWS ][ par_width*4 ]; vec256 v[ PK_NROWS ][ par_width ]; } par; uint16_t m; vec256 mm; uint64_t sk_int[ GFBITS ]; vec256 consts[ 16 ][ GFBITS ]; vec256 eval[ 16 ][ GFBITS ]; vec256 prod[ 16 ][ GFBITS ]; vec256 tmp[ GFBITS ]; uint64_t list[1 << GFBITS]; uint64_t one = 1; uint64_t t; uint16_t ind[ PK_NROWS ]; uint16_t ind_inv[ PK_NROWS ]; // compute the inverses irr_load(sk_int, irr); fft(eval, sk_int); vec256_copy(prod[0], eval[0]); for (i = 1; i < 16; i++) vec256_mul(prod[i], prod[i-1], eval[i]); vec256_inv(tmp, prod[15]); for (i = 14; i >= 0; i--) { vec256_mul(prod[i+1], prod[i], tmp); vec256_mul(tmp, tmp, eval[i+1]); } vec256_copy(prod[0], tmp); // fill matrix de_bitslicing(list, prod); for (i = 0; i < (1 << GFBITS); i++) { list[i] <<= GFBITS; list[i] |= i; list[i] |= ((uint64_t) perm[i]) << 31; } crypto_sort_int64(list, 1 << GFBITS); for (i = 1; i < (1 << GFBITS); i++) if (uint64_is_equal_declassify(list[i-1] >> 31,list[i] >> 31)) return -1; to_bitslicing_2x(consts, prod, list); for (i = 0; i < (1 << GFBITS); i++) pi[i] = list[i] & GFMASK; for (j = 0; j < nBlocks_I+1; j++) for (k = 0; k < GFBITS; k++) mat.v[ k ][ j ] = prod[ j ][ k ]; for (i = 1; i < SYS_T; i++) for (j = 0; j < nBlocks_I+1; j++) { vec256_mul(prod[j], prod[j], consts[j]); for (k = 0; k < GFBITS; k++) mat.v[ i*GFBITS + k ][ j ] = prod[ j ][ k ]; } // Gaussian elimination + column swaps to obtain L, U, and P such that LP M = U // L and U are stored in the space of M // P is stored in ind for (i = 0; i < PK_NROWS; i++) ind_inv[i] = ind[ i ] = i; for (row = 0; row < PK_NROWS; row++) { i = row >> 6; j = row & 63; if (row == PK_NROWS - 32) { if (mov_columns(mat.w, pi, pivots)) return -1; } for (k = row + 1; k < PK_NROWS; k++) { extract_01_masks(&m, mat.w[ row ], mat.w[ k ], row); uint16_cswap(&ind[row], &ind[k], m); mm = vec256_set1_16b(m); for (c = 0; c < nBlocks_I+1; c++) vec256_cswap(&mat.v[ row ][ c ], &mat.v[ k ][ c ], mm); } if ( uint64_is_zero_declassify((mat.w[ row ][ i ] >> j) & 1) ) // return if not systematic { return -1; } for (k = row+1; k < PK_NROWS; k++) { t = mat.w[ k ][ i ] & (one << j); mm = extract_mask256(mat.w[k], row); for (c = 0; c < nBlocks_I+1; c++) mat.v[ k ][ c ] ^= mat.v[ row ][ c ] & mm; mat.w[ k ][ i ] |= t; } } // apply M^-1 to the remaining columns composeinv(PK_NROWS, ind_inv, ind_inv, ind); for (k = 0; k < GFBITS; k++) { for (b = 1; b < par_width; b++) par.v[ k ][ b ] = prod[nBlocks_I + b][ k ]; } for (i = 1; i < SYS_T; i++) { for (b = 1; b < par_width; b++) vec256_mul(prod[nBlocks_I + b], prod[nBlocks_I + b], consts[nBlocks_I + b]); for (k = 0; k < GFBITS; k++) for (b = 1; b < par_width; b++) par.v[ i*GFBITS + k ][ b ] = prod[nBlocks_I + b][ k ]; } // apply P for (i = 0; i < PK_NROWS; i++) ind[i] = ind_inv[i]; sort_rows(PK_NROWS, ind, par.v); // apply L for (row = PK_NROWS-1; row >= 0; row--) for (i = row-1; i >= 0; i--) { mm = extract_mask256(mat.w[row], i); for (k = 1; k < par_width; k++) par.v[ row ][ k ] ^= par.v[ i ][ k ] & mm; } // apply U^-1 for (i = 0; i < PK_NROWS; i++) par.v[i][0] = mat.v[i][nBlocks_I]; for (row = PK_NROWS-1; row >= 0; row--) for (i = PK_NROWS-1; i > row; i--) { mm = extract_mask256(mat.w[row], i); for (k = 0; k < par_width; k++) par.v[ row ][ k ] ^= par.v[ i ][ k ] & mm; } for (row = 0; row < PK_NROWS; row++) { for (k = 0; k < 42; k++) store8(pk + PK_ROW_BYTES * row + k*8, par.w[row][k]); store_i(pk + PK_ROW_BYTES * row + k*8, par.w[row][k], 4); } // return 0; }