-rw-r--r-- 5809 libmceliece-20240513/crypto_kem/6960119/vec/pk_gen.c raw
/*
This file is for public-key generation
*/
// 20240508 djb: switch to crypto_sort_int64
// 20221231 djb: more 0 initialization to clarify data flow; tnx thom wiggers
// 20221230 djb: add linker lines
// linker define pk_gen
// linker use fft vec_inv vec_mul
#include "pk_gen.h"
#include "controlbits.h"
#include "crypto_sort_int64.h"
#include "params.h"
#include "benes.h"
#include "util.h"
#include "fft.h"
#include "crypto_declassify.h"
#include "crypto_uint64.h"
static crypto_uint64 uint64_is_equal_declassify(uint64_t t,uint64_t u)
{
crypto_uint64 mask = crypto_uint64_equal_mask(t,u);
crypto_declassify(&mask,sizeof mask);
return mask;
}
static crypto_uint64 uint64_is_zero_declassify(uint64_t t)
{
crypto_uint64 mask = crypto_uint64_zero_mask(t);
crypto_declassify(&mask,sizeof mask);
return mask;
}
#include <stdint.h>
static void de_bitslicing(uint64_t * out, const vec in[][GFBITS])
{
int i, j, r;
for (i = 0; i < (1 << GFBITS); i++)
out[i] = 0 ;
for (i = 0; i < 128; i++)
for (j = GFBITS-1; j >= 0; j--)
for (r = 0; r < 64; r++)
{
out[i*64 + r] <<= 1;
out[i*64 + r] |= (in[i][j] >> r) & 1;
}
}
static void to_bitslicing_2x(vec out0[][GFBITS], vec out1[][GFBITS], const uint64_t * in)
{
int i, j, r;
for (i = 0; i < 128; i++)
{
for (j = 0;j < GFBITS;++j) out0[i][j] = out1[i][j] = 0;
for (j = GFBITS-1; j >= 0; j--)
for (r = 63; r >= 0; r--)
{
out1[i][j] <<= 1;
out1[i][j] |= (in[i*64 + r] >> (j + GFBITS)) & 1;
}
for (j = GFBITS-1; j >= 0; j--)
for (r = 63; r >= 0; r--)
{
out0[i][GFBITS-1-j] <<= 1;
out0[i][GFBITS-1-j] |= (in[i*64 + r] >> j) & 1;
}
}
}
int pk_gen(unsigned char * pk, const unsigned char * irr, uint32_t * perm, int16_t * pi)
{
const int nblocks_H = (SYS_N + 63) / 64;
const int nblocks_I = (PK_NROWS + 63) / 64;
const int block_idx = nblocks_I - 1;
int tail = PK_NROWS % 64;
int i, j, k;
int row, c;
uint64_t mat[ PK_NROWS ][ nblocks_H ];
uint64_t ops[ PK_NROWS ][ nblocks_I ];
uint64_t mask;
vec irr_int[2][ GFBITS ];
vec consts[ 128 ][ GFBITS ];
vec eval[ 128 ][ GFBITS ];
vec prod[ 128 ][ GFBITS ];
vec tmp[ GFBITS ];
uint64_t list[1 << GFBITS];
uint64_t one_row[ 128 ];
// compute the inverses
irr_load(irr_int, irr);
fft(eval, irr_int);
vec_copy(prod[0], eval[0]);
for (i = 1; i < 128; i++)
vec_mul(prod[i], prod[i-1], eval[i]);
vec_inv(tmp, prod[127]);
for (i = 126; i >= 0; i--)
{
vec_mul(prod[i+1], prod[i], tmp);
vec_mul(tmp, tmp, eval[i+1]);
}
vec_copy(prod[0], tmp);
// fill matrix
de_bitslicing(list, prod);
for (i = 0; i < (1 << GFBITS); i++)
{
list[i] <<= GFBITS;
list[i] |= i;
list[i] |= ((uint64_t) perm[i]) << 31;
}
crypto_sort_int64(list, 1 << GFBITS);
for (i = 1; i < (1 << GFBITS); i++)
if (uint64_is_equal_declassify(list[i-1] >> 31,list[i] >> 31))
return -1;
to_bitslicing_2x(consts, prod, list);
for (i = 0; i < (1 << GFBITS); i++)
pi[i] = list[i] & GFMASK;
for (j = 0; j < nblocks_I; j++)
for (k = 0; k < GFBITS; k++)
mat[ k ][ j ] = prod[ j ][ k ];
for (i = 1; i < SYS_T; i++)
for (j = 0; j < nblocks_I; j++)
{
vec_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++)
mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ];
}
// gaussian elimination to obtain an upper triangular matrix
// and keep track of the operations in ops
for (i = 0; i < PK_NROWS; i++)
for (j = 0; j < nblocks_I; j++)
ops[ i ][ j ] = 0;
for (i = 0; i < PK_NROWS; i++)
{
ops[ i ][ i / 64 ] = 1;
ops[ i ][ i / 64 ] <<= (i % 64);
}
uint64_t column[ PK_NROWS ];
for (i = 0; i < PK_NROWS; i++)
column[i] = mat[ i ][ block_idx ];
for (row = 0; row < PK_NROWS; row++)
{
i = row >> 6;
j = row & 63;
for (k = row + 1; k < PK_NROWS; k++)
{
mask = mat[ row ][ i ] >> j;
mask &= 1;
mask -= 1;
for (c = 0; c < nblocks_I; c++)
{
mat[ row ][ c ] ^= mat[ k ][ c ] & mask;
ops[ row ][ c ] ^= ops[ k ][ c ] & mask;
}
}
if ( uint64_is_zero_declassify((mat[ row ][ i ] >> j) & 1) ) // return if not systematic
{
return -1;
}
for (k = row+1; k < PK_NROWS; k++)
{
mask = mat[ k ][ i ] >> j;
mask &= 1;
mask = -mask;
for (c = 0; c < nblocks_I; c++)
{
mat[ k ][ c ] ^= mat[ row ][ c ] & mask;
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
}
}
// computing the lineaer map required to obatin the systematic form
for (row = PK_NROWS-1; row >= 0; row--)
for (k = 0; k < row; k++)
{
mask = mat[ k ][ row/64 ] >> (row&63);
mask &= 1;
mask = -mask;
for (c = 0; c < nblocks_I; c++)
ops[ k ][ c ] ^= ops[ row ][ c ] & mask;
}
// apply the linear map to the non-systematic part
for (j = nblocks_I; j < nblocks_H; j++)
for (k = 0; k < GFBITS; k++)
mat[ k ][ j ] = prod[ j ][ k ];
for (i = 1; i < SYS_T; i++)
for (j = nblocks_I; j < nblocks_H; j++)
{
vec_mul(prod[j], prod[j], consts[j]);
for (k = 0; k < GFBITS; k++)
mat[ i*GFBITS + k ][ j ] = prod[ j ][ k ];
}
for (i = 0; i < PK_NROWS; i++)
mat[ i ][ block_idx ] = column[i];
for (row = 0; row < PK_NROWS; row++)
{
i = row >> 6;
j = row & 63;
for (k = 0; k < nblocks_H; k++)
one_row[ k ] = 0;
for (c = 0; c < PK_NROWS; c++)
{
mask = ops[ row ][ c >> 6 ] >> (c & 63);
mask &= 1;
mask = -mask;
for (k = block_idx; k < nblocks_H; k++)
one_row[ k ] ^= mat[ c ][ k ] & mask;
}
for (k = block_idx; k < nblocks_H - 1; k++)
{
one_row[k] = (one_row[k] >> tail) | (one_row[k+1] << (64-tail));
store8(pk, one_row[k]);
pk += 8;
}
one_row[k] >>= tail;
store_i(pk, one_row[k], PK_ROW_BYTES % 8);
pk[ (PK_ROW_BYTES % 8)-1 ] &= (1 << (PK_NCOLS % 8)) - 1; // removing redundant bits
pk += PK_ROW_BYTES % 8;
}
//
return 0;
}