-rw-r--r-- 5368 libmceliece-20230612/crypto_kem/6688128/vec/bm.c raw
/*
  This file is for implementating the inversion-free Berlekamp-Massey algorithm
  see https://ieeexplore.ieee.org/document/87857
  For the implementation strategy, see
  https://eprint.iacr.org/2017/793.pdf
*/
// 20221230 djb: add linker lines
// linker define bm
// linker use vec_mul
// linker use gf_inv
#include "bm.h"
#include "gf.h"
static inline uint16_t mask_nonzero(gf a)
{
	uint32_t ret = a;
	ret -= 1;
	ret >>= 31;
	ret -= 1;
	return ret;
}
static inline uint16_t mask_leq(uint16_t a, uint16_t b)
{
	uint32_t a_tmp = a;
	uint32_t b_tmp = b;
	uint32_t ret = b_tmp - a_tmp; 
	ret >>= 31;
	ret -= 1;
	return ret;
}
static inline void vec_cmov(vec * out, vec * in, uint16_t mask)
{
	int i;
	vec m0, m1;
	m0 = vec_set1_16b(mask);
	m1 = ~m0;
	for (i = 0; i < GFBITS; i++)
	{
		out[i] = (in[i] & m0) | (out[i] & m1);
		out[i] = (in[i] & m0) | (out[i] & m1);
	}
}
static inline void interleave(vec *in, int idx0, int idx1, vec *mask, int b)
{
	int s = 1 << b;
	vec x, y;
	x = (in[idx0] & mask[0]) | ((in[idx1] & mask[0]) << s);
	y = ((in[idx0] & mask[1]) >> s) | (in[idx1] & mask[1]);
	in[idx0] = x;
	in[idx1] = y;
}
/* input: in, field elements in bitsliced form */
/* output: out, field elements in non-bitsliced form */
static inline void get_coefs(gf *out, vec *in)
{
	int i, k;
	vec mask[4][2];
	vec buf[16];
	
	for (i =  0; i < 13; i++) buf[i] = in[i];
	for (i = 13; i < 16; i++) buf[i] = 0;
	mask[0][0] = vec_set1_16b(0x5555);
	mask[0][1] = vec_set1_16b(0xAAAA);
	mask[1][0] = vec_set1_16b(0x3333);
	mask[1][1] = vec_set1_16b(0xCCCC);
	mask[2][0] = vec_set1_16b(0x0F0F);
	mask[2][1] = vec_set1_16b(0xF0F0);
	mask[3][0] = vec_set1_16b(0x00FF);
	mask[3][1] = vec_set1_16b(0xFF00);
	interleave(buf,  0,  8, mask[3], 3);
	interleave(buf,  1,  9, mask[3], 3);
	interleave(buf,  2, 10, mask[3], 3);
	interleave(buf,  3, 11, mask[3], 3);
	interleave(buf,  4, 12, mask[3], 3);
	interleave(buf,  5, 13, mask[3], 3);
	interleave(buf,  6, 14, mask[3], 3);
	interleave(buf,  7, 15, mask[3], 3);
	interleave(buf,  0,  4, mask[2], 2);
	interleave(buf,  1,  5, mask[2], 2);
	interleave(buf,  2,  6, mask[2], 2);
	interleave(buf,  3,  7, mask[2], 2);
	interleave(buf,  8, 12, mask[2], 2);
	interleave(buf,  9, 13, mask[2], 2);
	interleave(buf, 10, 14, mask[2], 2);
	interleave(buf, 11, 15, mask[2], 2);
	interleave(buf,  0,  2, mask[1], 1);
	interleave(buf,  1,  3, mask[1], 1);
	interleave(buf,  4,  6, mask[1], 1);
	interleave(buf,  5,  7, mask[1], 1);
	interleave(buf,  8, 10, mask[1], 1);
	interleave(buf,  9, 11, mask[1], 1);
	interleave(buf, 12, 14, mask[1], 1);
	interleave(buf, 13, 15, mask[1], 1);
	interleave(buf,  0,  1, mask[0], 0);
	interleave(buf,  2,  3, mask[0], 0);
	interleave(buf,  4,  5, mask[0], 0);
	interleave(buf,  6,  7, mask[0], 0);
	interleave(buf,  8,  9, mask[0], 0);
	interleave(buf, 10, 11, mask[0], 0);
	interleave(buf, 12, 13, mask[0], 0);
	interleave(buf, 14, 15, mask[0], 0);
	for (i = 0; i < 16; i++)
	for (k = 0; k <  4; k++)
		out[ k*16 + i ] = (buf[i] >> (k*16)) & GFMASK;
}
static void update(vec in[][GFBITS], const gf e)
{
	int i;
	vec tmp;
	for (i = 0; i < GFBITS; i++)
	{
		tmp = (e >> i) & 1;
		in[0][i] = (in[0][i] >> 1) | (in[1][i] << 63);
		in[1][i] = (in[1][i] >> 1) | (tmp      << 63);
	}
}
static inline gf vec_reduce(vec in[][GFBITS])
{
	int i;
	vec tmp;
	gf ret = 0;
	for (i = GFBITS-1; i >= 0; i--)
	{
		tmp = in[0][i] ^ in[1][i];
		tmp ^= tmp >> 32;
		tmp ^= tmp >> 16;
		tmp ^= tmp >> 8;
		tmp ^= tmp >> 4;
		tmp ^= tmp >> 2;
		tmp ^= tmp >> 1;
	
		ret <<= 1;
		ret |= tmp & 1;
	}
	return ret;
}
/* input: in, sequence of field elements */
/* output: out, minimal polynomial of in */
void bm(vec out[][ GFBITS ], vec in[][ GFBITS ])
{
	int i;
	uint16_t N, L;
	uint16_t mask;
	uint64_t one = 1, t;
	vec prod[2][GFBITS];
	vec interval[2][GFBITS];
	vec dd[2][GFBITS], bb[2][GFBITS];
	vec B[2][GFBITS], C[2][GFBITS];
	vec B_tmp[2][GFBITS], C_tmp[2][GFBITS];
	vec v[GFBITS];
	gf d, b, c0 = 1;
	gf coefs[256];
	// initialization
	get_coefs(&coefs[  0], in[0]);
	get_coefs(&coefs[ 64], in[1]);
	get_coefs(&coefs[128], in[2]);
	get_coefs(&coefs[192], in[3]);
	C[0][0] = 0;
	C[1][0] = 0;
	B[0][0] = 0; 
	B[1][0] = one << 63;
	for (i = 1; i < GFBITS; i++)
		C[0][i] = C[1][i] = B[0][i] = B[1][i] = 0;
	b = 1;
	L = 0;
	//
	for (i = 0; i < GFBITS; i++)
		interval[0][i] = interval[1][i] = 0;
	for (N = 0; N < 256; N++)
	{
		vec_mul(prod[0], C[0], interval[0]);
		vec_mul(prod[1], C[1], interval[1]);
		update(interval, coefs[N]);
		d = vec_reduce(prod);
		t = gf_mul2(c0, coefs[N], b);
		d ^= t & 0xFFFFFFFF;
		mask = mask_nonzero(d) & mask_leq(L*2, N);
		for (i = 0; i < GFBITS; i++) 
		{
			dd[0][i] = dd[1][i] = vec_setbits((d >> i) & 1);
			bb[0][i] = bb[1][i] = vec_setbits((b >> i) & 1);
		}
		
		vec_mul(B_tmp[0], dd[0], B[0]);
		vec_mul(B_tmp[1], dd[1], B[1]);
		vec_mul(C_tmp[0], bb[0], C[0]);
		vec_mul(C_tmp[1], bb[1], C[1]);
		vec_cmov(B[0], C[0], mask);
		vec_cmov(B[1], C[1], mask);
		update(B, c0 & mask);
		for (i = 0; i < GFBITS; i++)
		{ 
			C[0][i] = B_tmp[0][i] ^ C_tmp[0][i];
			C[1][i] = B_tmp[1][i] ^ C_tmp[1][i];
		}
		c0 = t >> 32; 
		b = (d & mask) | (b & ~mask);
		L = ((N+1-L) & mask) | (L & ~mask);
	}
	c0 = gf_inv(c0);
	for (i = 0; i < GFBITS; i++) 
		v[i] = vec_setbits((c0 >> i) & 1);
	vec_mul(out[0], C[0], v);
	vec_mul(out[1], C[1], v);
}