-rw-r--r-- 3544 libmceliece-20230612/crypto_kem/460896/vec/decrypt.c raw
/*
  This file is for Niederreiter decryption
*/
// 20221230 djb: add linker lines
// linker define decrypt
// linker use benes bm fft fft_tr
// linker use vec_mul vec_sq vec_inv
#include "decrypt.h"
#include "params.h"
#include "fft_tr.h"
#include "benes.h"
#include "util.h"
#include "fft.h"
#include "vec.h"
#include "bm.h"
#include <stdio.h>
static void scaling(vec out[][GFBITS], vec inv[][GFBITS], const unsigned char *sk, vec *recv)
{
	int i, j;
	
	vec irr_int[2][ GFBITS ];
	vec eval[128][ GFBITS ];
	vec tmp[ GFBITS ];
	//
	irr_load(irr_int, sk);
	fft(eval, irr_int);
	for (i = 0; i < 128; i++)
		vec_sq(eval[i], eval[i]);
	vec_copy(inv[0], eval[0]);
	for (i = 1; i < 128; i++)
		vec_mul(inv[i], inv[i-1], eval[i]);
	vec_inv(tmp, inv[127]);
	for (i = 126; i >= 0; i--)
	{
		vec_mul(inv[i+1], tmp, inv[i]);
		vec_mul(tmp, tmp, eval[i+1]);
	}
	vec_copy(inv[0], tmp);
	
	//
	for (i = 0; i < 128; i++)
	for (j = 0; j < GFBITS; j++)
		out[i][j] = inv[i][j] & recv[i];
}
static void preprocess(vec *recv, const unsigned char *s)
{
	int i;
	unsigned char r[ 1024 ];
	for (i = 0; i < SYND_BYTES; i++)    
		r[i] = s[i];
	for (i = SYND_BYTES; i < 1024; i++) 
		r[i] = 0;
	for (i = 0; i < 128; i++)
		recv[i] = load8(r + i*8);
}
static void postprocess(unsigned char * e, vec * err)
{
	int i;
	unsigned char error8[ (1 << GFBITS)/8 ];
	for (i = 0; i < 128; i++)
		store8(error8 + i*8, err[i]);
	for (i = 0; i < SYS_N/8; i++)
		e[i] = error8[i];
}
static void scaling_inv(vec out[][GFBITS], vec inv[][GFBITS], vec *recv)
{
	int i, j;
	for (i = 0; i < 128; i++)
	for (j = 0; j < GFBITS; j++)
		out[i][j] = inv[i][j] & recv[i];
}
static int weight_check(unsigned char * e, vec * error)
{
	int i;
	uint16_t w0 = 0;
	uint16_t w1 = 0;
	uint16_t check;
	for (i = 0; i < (1 << GFBITS); i++)
		w0 += (error[i/64] >> (i%64)) & 1;
	for (i = 0; i < SYS_N; i++)
		w1 += (e[i/8] >> (i%8)) & 1;
	check = (w0 ^ SYS_T) | (w1 ^ SYS_T);
	check -= 1;
	check >>= 15;
	return check;
}
static uint16_t synd_cmp(vec s0[][ GFBITS ] , vec s1[][ GFBITS ])
{
	int i, j;
	vec diff = 0;
	for (i = 0; i < 4; i++)
	for (j = 0; j < GFBITS; j++)
		diff |= (s0[i][j] ^ s1[i][j]);
	
	return vec_testz(diff);	
}
/* Niederreiter decryption with the Berlekamp decoder */
/* intput: sk, secret key */
/*         s, ciphertext (syndrome) */
/* output: e, error vector */
/* return: 0 for success; 1 for failure */
int decrypt(unsigned char *e, const unsigned char *sk, const unsigned char *s)
{
	int i; 
	uint16_t check_synd;
	uint16_t check_weight;
	vec inv[ 128 ][ GFBITS ];
	vec scaled[ 128 ][ GFBITS ];
	vec eval[ 128 ][ GFBITS ];
	vec error[ 128 ];
	vec s_priv[ 4 ][ GFBITS ];
	vec s_priv_cmp[ 4 ][ GFBITS ];
	vec locator[2][ GFBITS ];
	vec recv[ 128 ];
	vec allone;
	// Berlekamp decoder
	preprocess(recv, s);
	benes(recv, sk + IRR_BYTES, 1);
	scaling(scaled, inv, sk, recv);
	fft_tr(s_priv, scaled);
	bm(locator, s_priv);
	fft(eval, locator);
	// reencryption and weight check
	allone = vec_setbits(1);
	for (i = 0; i < 128; i++)
	{
		error[i] = vec_or_reduce(eval[i]);
		error[i] ^= allone;
	}
	scaling_inv(scaled, inv, error);
	fft_tr(s_priv_cmp, scaled);
	check_synd = synd_cmp(s_priv, s_priv_cmp);
	//
	benes(error, sk + IRR_BYTES, 0);
	postprocess(e, error);
	check_weight = weight_check(e, error);
#ifdef KAT
  {
    int k;
    printf("decrypt e: positions");
    for (k = 0;k < SYS_N;++k)
      if (e[k/8] & (1 << (k&7)))
        printf(" %d",k);
    printf("\n");
  }
#endif
	return 1 - (check_synd & check_weight);
}