/* This file is for secret-key generation */ // 20221230 djb: add linker lines // linker define genpoly_gen // linker use gf_iszero gf_mul gf_inv GF_mul #include "sk_gen.h" #include "randombytes.h" #include "controlbits.h" #include "params.h" #include "util.h" #include "gf.h" #include "crypto_declassify.h" #include "crypto_uint16.h" static inline crypto_uint16 gf_is_zero_declassify(gf t) { crypto_uint16 mask = crypto_uint16_zero_mask(t); crypto_declassify(&mask,sizeof mask); return mask; } /* input: f, element in GF((2^m)^t) */ /* output: out, minimal polynomial of f */ /* return: 0 for success and -1 for failure */ int genpoly_gen(gf *out, gf *f) { int i, j, k, c; gf mat[ SYS_T+1 ][ SYS_T ]; gf mask, inv, t; // fill matrix mat[0][0] = 1; for (i = 1; i < SYS_T; i++) mat[0][i] = 0; for (i = 0; i < SYS_T; i++) mat[1][i] = f[i]; for (j = 2; j <= SYS_T; j++) GF_mul(mat[j], mat[j-1], f); // gaussian for (j = 0; j < SYS_T; j++) { for (k = j + 1; k < SYS_T; k++) { mask = gf_iszero(mat[ j ][ j ]); for (c = j; c < SYS_T + 1; c++) mat[ c ][ j ] ^= mat[ c ][ k ] & mask; } if ( gf_is_zero_declassify(mat[ j ][ j ]) ) // return if not systematic { return -1; } inv = gf_inv(mat[j][j]); for (c = j; c < SYS_T + 1; c++) mat[ c ][ j ] = gf_mul(mat[ c ][ j ], inv) ; for (k = 0; k < SYS_T; k++) { if (k != j) { t = mat[ j ][ k ]; for (c = j; c < SYS_T + 1; c++) mat[ c ][ k ] ^= gf_mul(mat[ c ][ j ], t); } } } for (i = 0; i < SYS_T; i++) out[i] = mat[ SYS_T ][ i ]; return 0; }